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Abstract— Legged robots offer a more versatile solution to
traversing outdoor uneven terrain compared to their wheeled
and tracked counterparts. They also provide a unique oppor-
tunity to perceive the terrain-robot interactions by listening to
the sounds generated during locomotion. Legged robots such
as hexapod robots produce rich acoustic information for each
gait cycle which includes the foot fall sounds and feet pushing
on the terrain (support phase), as well as the sounds produced
when the feet travel through the air (stride phase). Interpreting
this information to perceive the terrain it is traversing makes
available another valuable sensing modality which can feed
in to higher level systems to facilitate robust and efficient
navigation through unknown terrain. We present an online real-
time terrain classification system for legged robots that utilise
features from the acoustic signals produced during locomotion.
A 32-dimensional feature vector extracted from acoustic data
recorded using an on-board microphone was fed in to a multi-
class Support Vector Machine (SVM). The SVM was trained
on 7 different terrain types and the results of the experimental
evaluations are presented. The system was implemented using
the Robotic Operating System (ROS) for real-time terrain
classification. A classification time-resolution of 1 s was achieved
by capturing acoustic signals of two steps, and the results show
a true positive rate (sensitivity) of up to 92.9%. We also present
a noise subtraction technique which removes servo noise and
improves the sensitivity up to 95.1%.

I. INTRODUCTION

Legged robots have the capability of traversing difficult
outdoor terrain which can prove challenging to wheeled
or tracked robots [1]. In many scenarios, these robots are
required to operate on terrain with minimal or no prior
information. Given that legged robots have the ability to
adapt their gait patterns to different terrain types to maintain
efficient locomotion [2], [3], the ability to perform terrain
classification is important [4]. Among other modalities,
acoustic sensing has been successfully used to perceive
robot-terrain interactions [5]. For humans, listening to the
sound of our foot steps is an intuitive way of obtaining
information about what type of terrain is underfoot, even in
the dark. Gathering inspiration from this as well as building
upon existing work [6], [4], this paper presents an online
real-time terrain classification system for legged robots using
acoustic features. We experimentally evaluate the proposed
system and present cross validation results showing a high
true positive rate (sensitivity). We also present a noise
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Fig. 1. A modified PhantomX Hexapod robot [7]

subtraction technique which removes the servo noise and
further improves the sensitivity of the system.

In the domain of robotic perception, integrating multiple
sensing modalities is crucial to robustly and accurately
perceive the surrounding environment. Examples of widely
used robotic perception modalities are vision, sonar, lidar,
and inertial sensing. However, acoustic sensing is a relatively
underutilised method in robotics which can complement
popular sensing modalities such as vision and lidar by being
able to perform well in situations leading to failure modes
in the latter sensors (e.g. varying lighting, darkness, dust,
fog, smoke). The presented system has the potential to
operate alongside other terrain perception methods, feeding
in to higher level systems to facilitate effective and reliable
navigation through difficult terrain with minimal prior knowl-
edge.

Legged robots produce distinct sounds as a result of the
legs interacting with the terrain they traverse on - both during
the support phase and the stride phase of the gait cycle. By
using a microphone, we sense these acoustic signals, extract
a rich feature set and feed it in to a Support Vector Machine
(SVM) to perform online real-time terrain classification. The
novel contributions of this work can be listed as follows:

• A real-time terrain classification system with a 1 Hz
update rate,

• A 32-dimensional feature vector with combined spectral
and temporal features,

• Noise removal method to subtract servo noise to im-
prove performance,

• 95.1% true positive rate with noise removal (92.9% in
real-time trials) compared to 90% for offline legged
robots [6].

The rest of this paper is organised as; section II reviews
related work in the area of acoustic classification, section III
describes the overall classification system, section IV de-



scribes the data collection method used while section V
present the experiments discuss the results. Finally, sec-
tion VI presents the final conclusions.

II. RELATED WORK

In speech recognition applications a common feature that
is used to classify audio signals is the Mel-Frequency
Cepstral Coefficients (MFCC) [8]. As the non-linear Mel-
frequency bands are optimised based on the human auditory
system, applying a linearly spaced frequency band may better
suit sound produced by robot-terrain interactions. Ozkul et al.
[6] proposed the use of trapezoidal frequency bands instead
of the Mel-frequency bands. We apply similar frequency
bands and analyse their effects in the following sections.

In most applications that extract acoustic features, trans-
formation from frequency to time domain is performed by
applying the Discrete Fourier Transform (DFT) [5], or its
computationally efficient form, the Fast Fourier Transform
(FFT). With the transformation into the frequency domain,
the signal power spectrum estimate could be used to extract
features such as the spectral flux, spectral centroid, spectral
roll-off, spectral spread, spectral kurtosis and short-time
energy (STE) [9], [5].

Libby and Stentz [5] presented a method for classifying
vehicle terrain interactions and hazardous interactions in
outdoor environments. The features used in their work were
the zero-crossing rate (ZCR), STE, spectral roll-off, spectral
centroid, spectral flux, spectral centroid, spectral skewness
and spectral kurtosis. A Support Vector Machine (SVM) was
used to classify the terrains to their respective classes. They
achieved the best accuracy of 78% for 3 hazardous vehicle-
terrain interactions and three terrain classes. After applying
a 2 s smoothing filter to reduce noise, accuracy improved to
92%. Our approach aims to investigates spectral subtraction
as an alternative noise reduction technique.

Durst and Krotkov [10] proposed a method for classifica-
tion of single impact sounds where the surface of an object
was struck by an aluminium cane. The resulting acoustic
emissions were then examined to classify the object that was
struck. Ozkul et al. [6] was able to classify terrains using
the acoustics generated from the naturally occurring steps
of a hexapod robot. A tripod gait configuration was used,
meaning that three single-impact sounds occurred at the same
time. Ozkul et al. predominately extracted features from
frequency domain including the frequency band coefficients,
delta-features and the ZCR. However, the ZCR is a time
based feature that gives a representation of the frequency
of the changing positive-negative signs. Ozkul et al. also
proposed a method of continually classifying for single-
impact sounds without knowing when the impacts will occur.
This was achieved by windowing the acoustic signal into
frames and extracting the features. A number of windows
were then averaged at a certain time interval to form the
training set. Their offline classifier achieved a performance
of up to 90% for six surface classes, which is the current
state of the art for acoustic terrain classification for legged
robots.
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Fig. 2. System overview

Valada et al. [11] utilised a Deep Convolutional Neural
Network (DCNN) that learns features to classify the vehicle-
terrain interactions for a wheeled robot. Their system yielded
an overall accuracy of 99.57% which is the current state of
the art for acoustic vehicle-terrain classification for wheeled
robots. Our work presents and implements an online real-
time classification algorithm that exceeds current legged
robot performance.

III. REAL-TIME TERRAIN CLASSIFICATION SYSTEM

A block diagram of the proposed acoustic terrain classifi-
cation algorithm is shown in Figure 2. We first collected
audio data of the robot’s interactions during traversal on
different terrains which is further described in Section IV.
A few pre-processing steps were carried out on the audio
data, including data conversion, windowing, audio inspection
and noise removal. For each window, 32 features from the
frequency and time domains were extracted to compile a
training data set. The feature vectors were then fed into a
multi-class Support Vector Machine (SVM) to generate a
classification model. Our algorithm was implemented offline
in Matlab and online real-time in the Robotic Operating
System (ROS). The Matlab implementation served as an
experimental environment to test and validate our results.
ROS provided parallel execution of data collection, feature
extraction and classification by splitting the algorithm into
several nodes (processes). The following sections will con-
tinue to describe each component of the algorithm in detail.
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Fig. 3. Linear Power Band Filters

A. Data Overview and Pre-processing

To capture the audio data, we used the open source
software HARK-ROS and Hark designer [12] in Ubuntu
12.04. A ROS node was configured to publish audio data
messages which could either be saved as a bag file for offline
processing or used directly for online real-time classification.
During recording, each of the bag files were labelled with
the terrain type and the location. Labelling the location was
imperative in validating the classifier’s performance with
new locations, this is explained further in Section V-C.
The labelled bag files were then converted to MAT-files for
generating the training set in Matlab.

Overfitting may occur if the model is too general and
describes noise instead of terrain specific characteristics [13].
We attempted to prevent overfitting by listening to each
audio recording, and manually removing files that contained
noticeable environment noise such as car sounds or bird
calls. Additionally, there was servomotor noise present in
recordings, which was difficult to eliminate without knowing
when each of the legs impacted the surface. However,
we investigated the use of a noise removal using spectral
subtraction [14]. Using this approach, the noise generated
from the servos was subtracted from the original signal.

The next stage was to split each sequence in the time
domain into short windows. Each window contained 50%
overlap between each successive window. Features were
extracted from the windows, and windows were grouped
to give token windows [6]. Each token was then used as
a training vector to give one classification prediction. The
time region containing the majority of terrain information
was when the robot’s legs impacted the surface. As the leg
impact time was unknown, the minimum token size needed
to incorporate the acoustic characteristics of at least one
impact. Hence, our minimum token size was set to 0.5 s
when the hexapod was traversing at 9 cms−1. In section V
we experiment and analyse the effects of different window
and token sizes.

B. Feature Extraction

The next stage consisted of extracting time and frequency
domain features from each window. To transform the signal
into the frequency domain, we applied a Hanning window
to each window partition, effectively smoothing the signal
and reducing truncation effects. We then calculated the FFT
for each window. The FFT size was set to equal the window
size. We kept the magnitude of the power signal and ignored
the phase. Due to the symmetry of the FFT, only the first
half of the windowed signal was used.

The MFCCs are widely used features in speech recognition
algorithms [8]. As proposed in Ozkul et al. [6], a variation
from the Mel-frequency scale is to use evenly spaced band-
pass filters. Analysing the spectrograms of each of the terrain
classes showed that the majority of the spectral power was
between 0 to 15 kHz. However, after experimenting with
different frequencies it was found that 0 to 10 kHz contained
the majority of distinctive information. The power spectrum
was multiplied by 10 successive band filters over 0 to 10 kHz
with an overlap of 100 Hz between each band, as shown
in Figure 3. The mean and standard deviation across the
token was calculated, giving a 20-dimensional feature set.
We also observed the differences in filtered spectral powers
between each successive window, namely the delta-features.
The mean and standard deviation of the delta-features were
calculated, giving an additional 20 dimensions.

A number of spectral features that characterise the shape
of the distribution were extracted in the frequency domain,
including the spectral roll-off, spectral centroid, spectral
kurtosis, spectral skewness and spectral flux [15], [16], [17].
The equations for calculating the spectral features are defined
in Table I where, N is the window size, X(i) is the ith

sample of the power spectrum, Fk is the kth frequency
band-filter, n is the reference window, S is the equivalent
to half the window size (N/2), µ is the mean across a
window, θ is the standard deviation across a window, c is
a percentage threshold, f(i) is the ith frequency bin, y(i) is
the time domain signal, α emphasises the noise estimate, Γ
is a magnitude or power subtraction factor and PN is the
averaged noise estimate.

In calculating the spectral roll-off, which gives the fre-
quency bin below a certain percentage (c) of the magnitude
distribution, we choose the percentage to be 95% empirically.
The spectral centroid indicates the centre of mass of the
power frequency distribution. Spectral kurtosis measures
the peak of a frequency distribution and its similarity to
a Gaussian distribution. Spectral skewness measures the
distribution’s symmetry with respect to it’s magnitude about
the mean. Spectral flux measures the spectral change between
each successive window. A time based feature that exhibits
frequency characteristics is the ZCR, which measures the
number of zero crossings in the time domain [17]. For
each of these features the mean and standard deviation was
calculated across the token window adding 12 more elements
to the feature vector.

C. Classification

Support Vector Machines (SVM) provide a non-linear high
dimensional model that is generally less prone to overfitting
than other classifiers [18]. We implemented SVMs offline
and online using the open-source libSVM library [19]. Prior
to classification we scaled the features to avoid attributes
with large numeric ranges dominating attributes with small
numeric ranges [20]. We linearly scaled our feature vectors
between 0 and 1. The same scaling factors were used in both
training and testing.



TABLE I
FEATURE AND SPECTRAL SUBTRACTION EQUATIONS

Feature name Feature Equations

Band Bk =

N/2∑
i=1

X(i)Fk(i), k = 1, 2, . . . , 10

Delta ∆k = Bk(n)−Bk(n− 1), k = 1, 2, . . . , 10

Spectral Skewness SS =
1

S

N/2∑
i=1

X(i)− µ
θ

3

, where µ =
1

S

N/2∑
i=1

X(i) and θ =

√√√√ 1

S

N/2∑
i=1

(X(i)− µ)2

Spectral Kurtosis SK =
1

S

N/2∑
i=1

X(i)− µ
θ

4

− 3

Spectral Roll-off SR = k, where

k∑
i=1

X(i) =
c

100

N/2∑
i=1

X(i)

Spectral Flux SF =

√∑N/2
i=1 (X(i, n)−X(i, n− 1))2

N/2

Spectral Centroid SC =

∑N/2
i=1 f(i)X(i)∑N/2

i=1 X(i)

Zero-crossing Rate Zn =
1

N

N/2∑
i=1

|sgn[y(i)]− sgn[y(i− 1)]|, where sgn[x(m)] =

{
1, x(n) ≥ 0

−1, x(n) < 0

Spectral Subtraction P (i) = (X(i)− αPN (i))1/Γ

The choice of kernel is an open question, as we are
dealing with complex acoustic signals, and overlaps are
therefore expected to occur in the feature space. Radial
Basis Function (RBF) and the linear kernel have been shown
to effectively characterise acoustic terrain data [5]. RBF
kernels are used to map attributes into high dimensional
space when the relationship between class label and attributes
are nonlinear. Nonlinear mapping tends to not improve the
performance for higher dimensional feature vectors, meaning
that a linear kernel is sufficient [20]. Our tests compared
the performance of both the linear and RBF kernels. As
a benchmark comparison, a k-Nearest Neighbour (k-NN)
classifier was run in the WEKA environment [21].

We built a multi-class classifier with the “one-versus-one”

Fig. 4. Real-time terrain classification of the hexapod walking on gravel
and concrete. The bottom array displays the current classification (in red)
and the confidence level (brighter green indicates more confidence)

approach, which assigns each binary SVM a class based
on a max-wins voting strategy. To determine the optimal
parameters C and γ for the kernels, 10-fold cross validation
and a grid search was applied. In 10-fold cross validation the
data is partitioned in to N subsets of equal size. Progressively
one subset trains the model and the N − 1 subsets validate
the model. The predicted labels are compared to the actual
labels and an accuracy metric is calculated. The goal of the
grid search is to identify the parameters that achieve the
highest classification accuracy for new terrain classes. Grid
search iteratively trains the classifier with a new pair of C
and γ and compares the highest cross validation accuracy
of each. Using a finer grid, the process is repeated around
the parameters with the highest accuracy in order to give the
optimal parameters.

IV. DATA COLLECTION

Our tests were conducted on a modified PhantomX Hexa-
pod robot, consisting of 18 Dynamixel AX-12 smart ser-
vomotors (3 per leg), as shown in Figure 1. The standard
alternating tripod gait was used at a controlled speed of
9 cms−1. In the alternating tripod gait each step consists
of 3 simultaneous leg impacts. The leg height and stride
length were set at 45 mm to allow traversal on a wider
range of terrains. An omnidirectional Knowles microphone
(WP-23849-C36) was attached to the bottom of the hexapod
facing towards the ground to capture the hexapod-terrain
interactions. A Point Grey Chameleon (CMLN-13S2C-CS)
camera was mounted by four rods above the hexapod and
positioned to give a bird’s-eye view of the hexapod as it
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Fig. 5. Examples of terrain types used for training and testing the system

traversed on the different terrain. Attached to the camera
was a fisheye lens with a 185◦ field of view. The camera
was only used during real-time classification to verify the
predictions. The Fly Capture 2.0 software and the open-
source PGR camera package was used to process the image
messages. Figure 4 shows the GUI of the online real-time
terrain classification system.

Data was collected over a number of terrains including
carpet, grass, mulch, concrete, tiles, asphalt and gravel. For
each of the terrain types, data was collected from different
locations to provide variations within each terrain type.

Training with multiple locations helps prevent the classifier
from overfitting, meaning that the model is better able to
predict new locations [4]. All of the datasets were recorded
on flat surfaces. In total we recorded approximately 5 mins
worth of acoustic interactions for each terrain type.

Figure 5 shows the terrain classes used during training.
For grass terrain, the locations differed from cut to uncut
grass. For the mulch terrain, the locations contained bark
cuts with varying thickness, leaf coverage and age. For the
concrete terrain, the locations were recorded with varying
surface roughness, slab size and age. For the tile terrain,
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Fig. 6. Classification sensitivity of different window lengths and features

the locations contained ceramic tiles with varying shape and
surface roughness. For the carpet terrain, the locations were
varied by recording on high traffic areas, low traffic areas,
different ages and different knit structures. For the gravel
terrain, the locations varied with different grain sizes and
coarseness. For the asphalt terrain, the locations were varied
in roughness and fatigue, depending on the amount of traffic.

Additionally, two non-terrain specific classes were added
to the real-time classification system: stationary and free.
Stationary indicates when the hexapod was not moving,
while free indicates when the hexapod was suspended above
the ground and walking. These two non-terrain classes were
used as reference classes, otherwise in these circumstances
the real-time classifier would choose the next best terrain.
Having these two classes further emphasised the classifier’s
ability to classify multiple terrain classes. Recordings of
wooden bridges were conducted for earlier experiments,
however this terrain class was discarded as only a limited
number of different locations for wood could be found.

V. EXPERIMENTS AND RESULTS

This section describes the results of the acoustic terrain
classification algorithm. For each classification test, the num-
ber of training points in every class was lowered to match
that of the class with the least points, in order to preserve
symmetry. We then compared the effects of different SVM
kernels, parameters, token sizes and window sizes. We also
investigate the effects of removing noise from the signal
using spectral subtraction.
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A. Feature Selection

We experimented with two kernels: the RBF and the linear
kernel. A grid search was performed with a coarse grid range
from 2−5 to 211 for C and γ, and a finer grid was done on
the neighbourhood of the best parameter of the coarse grid.
Each classification model’s performance was evaluated by
10-fold cross validation. Confusion matrices, where columns
show the actual classes and rows show the predicted classes
for each trial, was then calculated and tabulated in Figure
9a. From the confusion matrices we derived useful statistical
measures in Table II such as accuracy, precision (positive-
predictive value), sensitivity (true-positive rate) and speci-
ficity [22].

In order to determine the optimal window length, the SVM
was trained with an RBF kernel and a token length of 1 s. The
results in Figure 6 show that across all feature combinations,
a smaller window size was able to capture sufficient informa-
tion for new predictions. Hence, the following experiments
were trained with a window size of 256 samples.

Evaluating the token size presented a time-resolution
trade-off. That is, the trade-off between minimising the time
that tokens are sampled and maximising the classification
accuracy obtained with a greater token size. The minimum
token size that should be considered is equivalent to the
minimum time to take each step. Figure 7 shows the results
of token sizes from 0.5 s (1 step) to 2.5 s (5 steps). The results
show that larger token sizes tend to increase the sensitivity.
However, due to the trade-off we used a 1 s token size which
gave a 1.8% performance increase over the 0.5 s token size.

Figure 8 shows the performance results of two SVM
kernels and the k-NN classifier. Both kernels had similar
classification performance across all features, however, the
RBF kernel lead on average by 0.5%. In this case both
kernels are viable, however, we opted to use the RBF due to
its nonlinear separation benefits.

B. System Performance

A comparison of the feature sets’ performance is shown
in Figures 6, 7 and 8. In preliminary studies we found that
integrating the mean and standard deviation of each feature
improved the average performance by 4%. Hence, in the
following comparisons the results yield an additional 4%
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(a) (b) (c)

Fig. 9. Normalised confusion matrices of (a) 10-fold crossvalidation with all terrains, (b) leave-one-out crossvalidation with all terrains and (c) leave-one-out
cross validation with asphalt and tile combined in to concrete. Background shading of each cell represents the relative number of predictions.

performance for the feature sets proposed in the respective
literature.

The spectral features which were a selection of the best
performing features in the work by Libby and Stentz [5]
had the worst performance. The band features generated
from the MFCCs presented in the work by Ozkul et al. [6]
had comparatively better results, increasing performance by
4.2%. Combining the Spectral and Band features we get an
improvement of 6% over just using the Spectral features.
The addition of delta-features presented by Ozkul et al.
had less than 0.5% increase on the performance. Applying
Occam’s razor, we dropped the delta-features and selected
the 32-dimensional feature set consisting of Spectral and
Band features.

Summarising the highest performing attributes, our system
uses a 1 s token length, a window size of 256 samples
and the Spectral and Band features (means and standard
deviations). Disregarding the additional classes stationary
and free as they achieved 100% classification and would not
be encountered in practical applications, our system yielded
an overall sensitivity of 92.9% on terrain classes.

C. New terrains leave-one-out cross validation

Best et al. [4] addresses the issue of location data being
included in the training set during k-fold cross validation.
The proposed method was the leave-one-out cross validation,
which involves iteratively testing with one location and train-
ing with all other locations. The confusion matrix showing
the new validation results are shown in Figure 9b for all the
terrain classes.

There was considerable confusion in the asphalt, tile and
concrete terrains. These firmer terrains likely have simi-
lar acoustic interactions and overlap in the feature space,
decreasing the classifier’s ability to discriminate between
classes. There was also confusion between the grass, mulch
and gravel terrains. Figure 9c shows the results after com-
bining the asphalt, tile and concrete classes where the per-
formance increased to over 95% sensitivity and precision
(Table II).

D. Spectral Subtraction

Figure 10 shows the classification results after spectral
subtraction with all terrain classes and with the combined
class of asphalt, tile and concrete. We extracted 20 s of servo
noise from each terrain class, resulting in approximately
140 s of noise data. A grid search ranging from 0.1 to 2 for
the parameters α and Γ was performed to give the optimal
parameters. Our average signal-to-noise ratio was -0.85 dB
prior to spectral subtraction, meaning that the noise domi-
nated the signal. This further emphasises our system’s ability
accurately classify in the presence of considerable noise.
Spectral subtraction significantly increased the sensitivity of
the grass by over 5%, a 4% improvement in mulch and
a small improvement in all other terrain classes. Overall,
the spectral subtraction increased the average sensitivity to
95.1% from the original signal’s 92.9% sensitivity.
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Fig. 10. Performance comparison of classifying with the original acoustic
signal and a noise removed signal

VI. CONCLUSIONS

We presented an acoustic feature based real-time terrain
classification system for legged robots operating at 1 Hz and
presented an experimental evaluation of the system. The
feature vectors consisted of combined spectral and temporal
features that accurately represented the sounds produced by
robot-terrain interactions. We also presented a noise removal
method which improved performance, especially in terrains
such as grass and mulch. The SVM which was trained on



TABLE II
ACCURACY, PRECISION, SENSITIVITY AND SPECIFICITY OF 10-FOLD CROSS VALIDATION WITH ALL TERRAINS, LEAVE-ONE-OUT CROSS VALIDATION

WITH ALL TERRAINS AND (*) LEAVE-ONE-OUT CROSS VALIDATION WITH ASPHALT AND TILE COMBINED IN TO CONCRETE.

10-fold Leave-one-out Leave-one-out*

Terrain Accu. Prec. Sens. Spec. Accu. Prec. Sens. Spec. Accu. Prec. Sens. Spec.

Carpet 99.7 97.7 99.7 99.7 97.7 96.0 82.7 99.6 97.8 95.6 88.4 99.3
Concrete* 96.3 84.0 82.0 98.0 82.5 24.5 27.6 89.4 99.7 98.3 99.3 99.7

Grass 98.0 93.5 88.1 99.2 93.1 66.8 75.9 95.3 90.4 64.3 73.5 93.2
Mulch 96.8 86.4 84.4 98.3 92.1 64.7 62.9 95.7 88.6 60.8 57.5 93.8
Gravel 97.3 86.1 90.5 98.2 94.5 72.8 80.3 96.3 93.5 75.7 80.6 95.7

Tile 97.8 89.9 90.5 98.7 86.6 38.4 33.7 93.2
Asphalt 97.7 89.0 90.8 98.6 93.9 72.3 72.8 96.5

Free 99.9 99.3 100.0 99.9 99.6 97.0 99.7 99.6 99.7 97.7 100.0 99.6
Stationary 100.0 100.0 100.0 100.0 98.8 100.0 89.5 100.0 98.4 100.0 88.8 100.0

7 different terrain types performed better than the state of
the art for legged robots. The overall sensitivity of the real-
time system was 92.9% which improved to 95.1% with noise
removal. Therefore, the output of the proposed system can
be effectively used by higher level systems on the robot to
facilitate robust and efficient navigation through unknown
terrain.
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