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Abstract. The ability to traverse uneven terrain is one of the key ad-
vantages of legged robots. However, their effectiveness relies on selecting
appropriate gait parameters, such as stride height and leg stiffness. The
optimal parameters highly depend on the characteristics of the terrain.
This work presents a novel stereo vision based terrain sensing method for
a hexapod robot with 30 degrees of freedom. The terrain in front of the
robot is analyzed by extracting a set of features which enable the system
to characterize a large number of terrain types. Gait parameters and leg
stiffness for impedance control are adapted based on this terrain charac-
terization. Experiments show that adaptive impedance control leads to
efficient locomotion in terms of energy consumption, mission success and
body stability.

Keywords: Legged robots; Adaptive control; Stereo vision; Terrain per-
ception; Rough terrain traversal

1 Introduction

Extreme terrain limits the locomotion of mobile robots. Wheeled robots, for
example, require an appropriate surface structure for safe maneuvering. Legged
robots, on the other hand, are able to adapt their gaits to overcome challenging
terrain [1]. One reason why legged robots have gained popularity is because
large parts of the Earth’s surface are still inaccessible to wheeled machines [2].
Nevertheless, wheeled machines outperform legged robots in many instances due
to the complexity of walking machines [3]. It still remains an open challenge to
further improve performance of legged machines in the field, especially with a
focus on using terrain information to adapt locomotion parameters.

A large number of methods for terrain perception have been discussed in
the literature. Such perception is based on exteroceptive sensing [4], propriocep-
tive sensing [5, 6], or a combination of both [7, 8]. The literature often discrimi-
nates between terrain classification and terrain characterization [7], approaching
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them as two different problems. Terrain classification aims to associate a surface
area with a category in a set of predefined terrain types [9, 10] while terrain
characterization tends to assess terrain properties with numeric values, without
considering semantics. Aiming for smooth and efficient maneuvering on variable
cluttered ground, this work presents a terrain perception system that charac-
terizes the terrain and adapts the virtual stiffness of an impedance controller
along with an assessment of the use of step height characterization for stride
height adaptation. For this purpose, a highly flexible hexapod robot with 30
degrees-of-freedom (DoF), Weaver [11] is equipped with a vision-based motion
adaptation system. The robot and the stereo vision setup are shown in Figure 1.
The visual perception module employs a novel method for feature extraction,
the “Even run length”, as well as other terrain feature evaluation methods for
accurate characterization of a large number of terrain types.

Fig. 1. Hexapod robot Weaver with its stereo camera system on rough terrain.

With its five DoF per leg, Weaver is able to control the orientation and
position of the foot tips to maintain ground contact by sensing the force at
each foot tip. The legs are controlled analogous to a virtual mass-spring-damper
system implemented with a Cartesian space impedance controller. Low virtual
stiffness of the legs allows traversing very uneven and cluttered terrain while
the robot would get stuck if the legs are very stiff. It was also found that with
low virtual stiffness, efficiency decreases for motion on flat terrain. Therefore,
the adaptive impedance controller introduced in this paper extends the control
strategy described in [11].

2 Terrain-dependant Control

A stereo camera pair is rigidly mounted on the robot such that it captures the
terrain immediately in front of the robot. Intrinsic and extrinsic calibration of
the stereo pair is realized using the OpenCV stereo calibration package with a
checkerboard of known dimensions. The generation of a disparity map (Figure 2)
provides depth information of the scene. It is stored as a point cloud in 3D
space. This point cloud is downscaled using a voxel grid filter [12] for more
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Fig. 2. From left to right: Left camera rectified image, right camera rectified image,
disparity map.

efficient spatial transformation. Using an Inertial Measurement Unit (IMU) the
data is transformed into a coordinate system which is aligned with the gravity
vector. This allows terrain intrinsic feature extraction [12,13]. A Digital Elevation
Model (DEM) is generated by discretizing the horizontal plane into quadratic
cells [14, 15]. The DEM point cloud consists of the maximum terrain elevation
in each cell (Figure 4).

A region of interest (RoI) of the DEM in front of the robot (covering an
area equivalent to that of the robot) is defined as the relevant area of interest
for terrain characterization, considering that the hexapod is moving foward. A
plane is fit into the RoI using a least squares method. From the fitted plane
and the DEM data inside the RoI a set of terrain features fi is extracted. This
set is designed to yield distinct characterization of a large number of surface
types (Figure 6). The diagram shown in Figure 3 presents the basic pipeline.
The features used for ground characterization are detailed in the following:

1) Center line average f1: Center line average is used to characterize the
spread of the elevation data [13].

f1 =
1

n ·m
·

n∑
0

m∑
0

|zdata − zplane| (1)

Here, zdata denotes the elevation value of a DEM point. zplane is the elevation
of the corresponding point of the fitted plane (i.e. xdata = xplane and ydata =
yplane). n and m are the dimensions of the considered area, expressed as the
number of grid cells of the DEM.
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Fig. 3. Overview on exteroceptive terrain perception and adaptive control. The stride
height adaptation is part of future work.
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Fig. 4. DEM Point Clouds in three different color schemes, from left to right: Terrain
elevation, local variance with red → high value, Even run length with white → cells
within the RoI that appertain to a run.

2) Slope f2 and f3: The slope of the fitted plane is the angular difference
between the horizontal plane and the plane that was fitted into the elevation
data. Different angles in lengthwise and crosswise directions of the robot’s body
are the inclination angles of the terrain.

3) Average local variance f4: Locally distributed variance is derived via a
“local descriptor” method. DEM cells in a limited neighborhood to a local de-
scriptor point are considered for variance calculation of the local descriptor cell.
Local descriptor method is similarly used in [12, 15]. The spatial average of the
local variance (Figure 4) is a measure of the size of ground clutter.

4) Line of sight shadows f5: There are areas inside the RoI which cannot
be perceived by the cameras (Figure 5). These geometrical perception limita-
tions are referred to as “shadows”. These occur if an object/clutter inhibits the
cameras lines of sight of reaching certain areas [16]. The system classifies these
unperceived areas as uncertainties. The more shadows occur the more conserva-
tive the choice of motion parameters, e.g. low leg stiffness.

5) Maximum step height f6: For sensible adaptation of the stride height, the
maximum local change in elevation occurring inside the RoI is determined. A
“local descriptor” method is used for calculation. The highest elevation difference
detected in a bounded neighbourhood of the local descriptor is the local step
height. Maximum step height is the highest step height inside the RoI. A similar
approach for maximum step height calculation is used in [15].

6) Even run length f7: This is a novel method to quantify the amount of
continuous, nearly-horizontal surfaces (Figure 4). It is adapted from grey scale
image analysis methods [17]. Sequential cells (lengthwise direction) of the DEM
are considered to be part of a run if they meet the following two requirements:
(1) The elevation of all cells inside a run is within a specified range. (2) The
run contains a minimum number of cells. Summing up the total number of cells
that are part of a run yields a measure for the tendency of surface patches to be
horizontal.

Fig. 5. Shadows caused by line of sight limitations [16].
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From subsets of the extracted features fi, descriptive ground characteriza-
tion parameters roughness ra and step height ha are derived (Figure 3). The
roughness and step height are derived by

ra =
1

anorm,1

5∑
i=1

ai · fi (2)

ha = (a6 · f6 + a7 · f4 · f7)/(anorm,2) (3)

The weighting parameters ai are set empirically, i.e. by defining suitable ra and
ha for a number of exemplary surface types. The parameters ra and ha are di-
mensionless values between zero and one. These parameters are used for adaptive
impedance control and future stride height adaptation respectively (Figure 3).

The formula for step height characterization (3) includes the term: a7 ·f4 ·f7.
This correction term quantifies the occurrence of nearly planar surfaces which
are bordered by slopes. It was found that this kind of terrain requires high
stride height to be smoothly traversed. This novel method is designed to enable
the robot to traverse terrain with sharp drop-offs/inclines (e.g. curbs, steps) by
adding an extra margin to the maximum step height f6. The system uses terrain
characterization rather than classification to achieve this task [7]. Characteriza-
tion results are presented in Section 4.

Adaptive impedance control sets the virtual stiffness cvirt depending on the
vision based roughness estimation ra. A suitable correlation between virtual
stiffness and roughness gives a third order polynomial:

cvirt = b0 + b1 · ra + b2 · r2a + b3 · r3a (4)

It is derived by choosing desired (optimal) stiffness values for a variety of ter-
rain types. A set of roughness/stiffness data points are chosen along with the
corresponding roughness estimates and a curve is fit over these points using
minimizing least squares error yielding (4).

As the robot perceives the roughness ra and step height ha characterization at
a given distance in front of the platform, information on ego-motion is needed. An
external position estimation system described in Section 3 is used to provide the
robot with its relative position, which is used to derive the required ego-motion
information. The visually perceived terrain characterization is associated with
a point in horizontal 2D space. This point lies centrally inside the RoI of the
DEM. In each time frame the area which contains the robot’s vertical projection
to the ground is searched for the point with the highest corresponding roughness
and step height value. This ensures sufficiently low stiffness (and sufficiently high
stride height respectively) to overcome rough terrain.

3 Experiments

For comparative evaluation of performance, a multi-terrain testbed of 8.4 m
length was used for experimentation. It consists of patches of six different ter-
rain types (Figure 6). Terrain types include flat ground (A), planar slope (B),
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Fig. 6. Multi-terrain testbed: 2.93 m of flat ground (segment A) followed by 1.2 m of
inclined planar segment (10◦) (segment B) are traversed before entering segment C.
Maximum height difference: 113 % (segment C), 28 % (segment D), 11 % (segment E)
and 72 % (segment F) of Weavers body height.

wooden cuboid blocks (C) and cluttered terrain consisting of crumbled concrete,
sand, pebbles and variably sized stones (D-F). The experiments consisted of the
hexapod robot repeatedly traversing this testbed with high level navigation (ve-
locity commands) provided by a human operator via joystick. A sample video of
the operation is available online4.

For evaluation of the motion efficiency, the cost of transport CoT is defined
as

CoT = P/(mgv) (5)

where P is the power consumption, m is the mass of the robot, g is the gravi-
tational acceleration and v is the velocity of the robot. The power consumption
P = UI was measured at 20 Hz by an Arduino based sensor system. This sensor
monitors the voltage U and current I of the power supply. Weaver’s mass is
9.3 kg. A robotic total station (Leica TS12) was used during testing to track the
position of the robot at 4 Hz. The total station tracks a reflector prism attached
to the robot and provides its 3D position. This ego-motion measurement serves
as input to the terrain characterization as described in the end of Section 2. In
addition, the velocity of the robot in (5) is approximated by finite differences of
the position for evaluation of the robot’s cost of transport (CoT).
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Fig. 7. The CoT of the adaptive (black line) and non-adaptive controller (red line)
shows the mean of eight runs on the testbed. One standard deviation of the adaptive
controller is shaded in grey. In addition, the virtual stiffness of the adaptive and non-
adaptive controller is shown.

4Video available here: https://confluence.csiro.au/display/ASL/ISER2016Stereo
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Fig. 8. Limit cycles of the roll and pitch movement projected onto the phase plane for
segments A and B of the multi-terrain testbed (based on IMU data).

Two sets of eight runs each have been conducted to examine the CoT. Adap-
tive impedance control was used during the first set and constant stiffness was
applied in the second set. The range of the virtual stiffness of the adaptive
controller is set between 1060 Nm−1 and 70340 Nm−1. The constant stiffness of
the non-adaptive impedance controller is the minimum of the range of stiffness
values of the adaptive impedance control (i.e. 1060 Nm−1). Thus, it allows to
overcome the most difficult segments of the multi-terrain testbed.

4 Results and Analysis

Adaptive Impedance Control The resulting CoT of the experiments de-
scribed in Section 3 are displayed in Figure 7. The difference in CoT in segments
A and B can be explained by angular and vertical robot body motion which
occurs if walking on flat ground or planar slope with a low stiffness. The CoT
reduction of adaptive impedance control is especially high in segment B since the
body motion (non-adaptive case) causes instability and slippage on the slope.
The additional body motion of the non-adaptive controller is shown in Figure 8.
It can be seen that the limit cycles of roll and pitch movement is reduced by
the adaptive controller in segment A and B. During transition from flat ground
to planar slope CoT is increased in both sets. On rough terrain (segments C to
F) the two sets have similar CoT. This matches expectations as there is no sig-
nificant difference of virtual stiffness. The adaptive controller reduces the CoT
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Fig. 9. Mean of step height characterisation terms and roughness characterization with
the eight runs using adaptive impedance control.

by 23 % (segment A), 13 % (segment B), 3 % (segment C), 10 % (segment D),
2 % (segment E) and 29 % (segment F). This also shows the value of adapting
the virtual stiffness by a small amount on rough terrain. Especially in segment
F the adaptive controller reduces high CoT spikes which occurs when the robot
approaches zero velocity.

Step Height Characterization The step height characterization term ha in
(3) serves as input for terrain dependant stride height adaptation5. As can be
seen in Figure 9 the correction term adds an extra margin to the corrected stride
height ha during traversal of segment C of the testbed. This segment consists
of wooden cuboid blocks and therefore contains horizontal surface patches with
vertical transitions. Therefore the system detects long run lengths and high
average local variance simultaneously. In all the other segments the correction
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Fig. 10. Comparison of center line average estimation: proprioceptive (foot tip posi-
tions) and exteroceptive (vision based terrain perception).

5Adaptive stride height will be addressed in future work.
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term is close to zero as either average local variance f4 or the even run length
f7 is close to zero (no continuous horizontal surfaces).

In segment B (planar slope) a higher stride height is desired to be set than
during traversal in segment A (flat ground). Corrected step height does not
provide discrimination between segments A and B as can be seen in Figure 9.
To achieve this discrimination ha can be considered to be complemented by the
roughness ra.

Centerline Average Estimation In Figure 10 shows verification results of
the visual extraction of center line average. It is measured along the testbed and
compared to the proprioceptive estimation of the center line average. The latter
is derived from the foot tip positions using forward kinematics [11]. It can be
seen that both estimations of the center line average coincide with each other
on uneven terrain (segments C to F). There is a constant offset between the two
estimations on flat terrain (segment A) and the proprioceptive estimation does
not recognize the transition from flat (segment A) to inclined terrain (segment
B) because the stiffness is too high to adapt the foot tip positions.

5 Conclusions

This works presented a stereo vision based terrain sensing method for a hexapod
robot. The system characterizes the terrain in front of the robot and adapts the
virtual stiffness of the impedance controller as well as the stride height. The
experimental results with the hexapod platform Weaver showed significant effi-
ciency improvements. In particular, the robot managed to efficiently traverse the
multi-terrain testbed. Adaptive impedance control showed slightly better per-
formance on very uneven terrain while it significantly lowered CoT for motion
on flat and inclined terrain. In addition, body stability was improved by adap-
tive impedance control as well. The robot chose optimal virtual stiffness values
depending on the traversed terrain. Moreover, the feature perception system
demonstrated the ability of the presented terrain analysis method to character-
ize nearly even surface patches which are bordered by steep slopes. Adapting
the robot’s stride height accordingly benefits application scenario in which the
robot is confronted with man-made structures such as curbs or steps.
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