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Abstract—We present a novel indoor localisation system that
used acoustic sensing. We developed the Acoustic Landmark
Locator to determine a person’s current room location, within
a building. Indoor environments tend to have distinct acoustic
properties due to physical structure. Hence rooms in a building
can have distinctive acoustic signatures. We found that these
acoustic signatures can determine the position of a person. We
attempted to identify location based on acoustic sensing of the
surrounding indoor environment. We developed a mobile phone
application that determined a person’s location by measuring
the acoustic levels of the surrounding environment. We used a
machine learning artificial neural network based algorithm to
classify the location of the person, within proximity to a landmark
or room. We tested the Acoustic Landmark Locator in an indoor
environment. Our tests show that the Acoustic Landmark Locator
mobile phone app was able to successfully determine the location
of the person carrying the mobile phone, in all test areas. It
was also found that background noise caused by the presence of
people does distort the landmark acoustic profiles but the artificial
neural network based classifier was able to reliably determine the
person’s room location. Further work will involve investigating
how other machine learning approaches can be used to better
improve position accuracy.

I. INTRODUCTION

Indoor localisation is a widely demanded function for
numerous applications in location based services, social net-
working and health domains. Commonly used outdoor position
tracking systems have become popular due to the availability of
GPS. Indoor localisation tracking of people with unobtrusive,
wearable sensors has valuable potential for applications where
position tracking and motion activity monitoring is also useful.
While outdoor localisation in open areas has been largely
solved with the advances in satellite-based GPS systems,
indoor localisation presents ongoing challenges due to the large
range of variables that affect different techniques. There are
no widely available or cost-effective and ubiquitous wireless
solutions like GPS for indoor localisation which require no
prior infrastructure. Indoor localisation systems are available,
but most have difficulties operating in confined spaces.

Current solutions for indoor localisation include inertial
dead-reckoning or wireless Radio Frequency (RF) trilateration.
RF localisation systems can be unreliable for localisation in
indoor environments due to the multi-path RF interference.
RF localisation systems also tend to require dedicated in-
frastructure in the surrounding environment. Dead-reckoning

may require extensive calibration for users, in order to be
accurate and reliable. Our aim was to develop a reliable and
accurate room localiser without deploying major infrastructure
or requiring significant calibration.

We present a novel indoor localisation system that uses
acoustic sensing. One advantage of using acoustic sensing for
localisation, is that it does not depend on major sensing infras-
tructure. Indoor environments tend to have distinct acoustic
properties due to the physical structure. Hence rooms in a
building can have distinctive acoustic signatures. We found that
these acoustic signatures can determine the room a person is
located in. We attempted to identify a room location based on
acoustic sensing of the surrounding indoor environment. We
developed the Acoustic Landmark Locator (ALL) to determine
a person’s current indoor location, such as a room or corridor
within a building. A machine learning neural network based
algorithm was used to classify a person’s location in proximity
to a landmark.

We evaluated the ALL in a typical and realistic indoor
environment. We investigated the performance aspects and
advantages of the ALL in terms of:

• Landmark Location Accuracy

• Noise effect due to the presence of people within the
surrounding environment

This paper is organised into the following sections. Sec-
tion II discusses related work. Section III presents an overview
of the ALL. Section IV discusses the classifier used in the
ALL. Section V describes the operation of the ALL mobile
app. An evaluation of the ALL is discussed in section VI.
Conclusions and further work are presented in section VII.

II. RELATED WORK

Various types of wireless technologies have been investi-
gated for indoor locatisation systems. Commonly used mobile
phone localisation systems include wireless and inertial sens-
ing. Ofstad et al, [1] used the inertial sensors on a mobile
phone to aid GPS localisation. Bahl et al, [2] and Youssef et
al [3] explored the use of localisation using RF signal strength
landmarks with Wifi. One of the drawbacks of Received
Signal Strength Indicator (RSSI) localisation is the need to
deploy access points or reference nodes in order to perform



localisation, as highlighted in [4]. To get high accuracy, a
large number of access points is typically required. This is
disadvantageous in most indoor situations due to placement
and power requirements of the access points. D’Souza et
al [5] and Ros et al [6] highlighted the disadvantage of
using RF signal strength for room localisation. One method
of improving RF localisation, is to use other sensors such as
inertial navigation combined with RF localisation, as shown
in [7].

Acoustic based sensing for localisation, using mobile phone
platforms has advantages over using RF localisation, in that
reference nodes or access points are not required because the
surrounding environment can provide a unique acoustic sig-
nature. Azizyan et al, [8] developed SurroundSense, a mobile
phone based acoustic localisation system for determining if
a user is in a particular store. Their SurroundSense was able
to achieve an accuracy of 87%. Azizyan et al [9] expanded
their work on SurroundSense to use a sensor network to detect
light and ambient sound levels. Tarzia et al [10] developed
an acoustic fingerprint or landmark localisation system that
worked in conjunction with RF wifi localisation. They achieved
an accuracy of 69%. Maisonneuve et al, [11] used a mobile
phone to map noise pollution with GPS coordinates, in an
urban environment. Such maps could be used for acoustic
landmark localisation in a large urban environments.

III. ACOUSTIC LANDMARK LOCATOR OVERVIEW

We propose the Acoustic Landmark Locator (ALL) which
can determine a person’s position within a building, by using
acoustic sensing. The resolution of the ALL was limited to
estimating which room or corridor a person was located in.
The ALL consisted of an Android based mobile phone, which
was used to measure the surrounding environment’s sound
levels. Based on the ALL’s current acoustic readings, the room
the mobile phone’s user was in, could be determined. The
ALL used a machine learning based artificial neural network
classifier to estimate the location.
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Fig. 1: Acoustic Profile of Room C with Carpet
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Fig. 2: Acoustic Profile of Room B with No Carpet

A map of landmarks and their associated acoustic profiles
was first compiled, as seen in Figure 3. Landmarks consisted
of rooms and corridors. The acoustic profiles of each landmark
is unique and can be influenced by factors such as the room
size, door positions and the presence of carpet. Figures 1 and 2
shows typical acoustic profiles of two different rooms. Figure 1
shows the profile of a room with carpet and Figure 2 shows the
profile of a room with no carpet. The acoustic profile consisted
of the audio spectrum, measured over a 1 second window,
using an audio sampling rate of 44kHz.

IV. ACOUSTIC LANDMARK LOCATOR CLASSIFIER

The ALL classifier was used to determine a person’s
location. We used a machine learning artificial neural net-
work based algorithm to classify the ALL mobile phone
app user’s landmark location. The Encog Machine Learning
Framework [12], [13] was used to implement the artificial
neural network classifier. For each landmark used, an acoustic
profile was measured and preprocessed using an Encog neural
network algorithm. The artificial neural network was trained
using the recorded acoustic profiles. The ALL classifier would
then determine which landmark the user was in close proximity
to. Preprocessing of the acoustic profiles was done on a
personal computer. A mobile phone was used to record the
acoustic profiles of each landmark. The preprocessing allowed
the Encog neural network to be trained. Once the neural
network classifier was trained, the kernel was saved and loaded
into the ALL mobile phone app. The ALL mobile phone app
would use the trained neural network’s kernel to process the
realtime sampled acoustic signal, to determine the user’s room
location.

A. Artificial Neural Network

Using an artificial neural network for the ALL classifier
was advantages as it allowed noisy data to be used, with lower
number of acoustic samples required. The ALL classifier’s
Artificial neutral network used Resilient Back Propagation
(RPROP) learning [13] to train using the landmark acoustic
profiles. Resilient Back Propagation was found to be suffi-
ciently accurate to use and had low latency when computing
the training kernels required for the ALL classifier. The

Fig. 3: Indoor Environment Testing Map Showing Landmarks
(A to E)



RPROP algorithm was used by the ALL classifier’s artificial
neural network, to learn each landmark acoustic profiles, using
an adaptive weighting algorithm, as seen in Equation 1. The
artificial neural network trains with each acoustic profile and
produces weightings which are saved as a kernel, to be used
in the ALL classifier. The weightings are used to represent
unique features related to each landmark acoustic profile. As
specified by Riedmiller et al [13], the RPROP algorithm uses
the signs of the partial derivatives of the weights error function
(E) to update the weights (w).

∆w
(t)
i,j =

{
−∆

(t)
i,j , if ∂E(t)

∂wi,j
> 0

+∆
(t)
i,j , if ∂E(t)

∂wi,j
< 0

(1)

V. ACOUSTIC LANDMARK LOCATOR MOBILE PHONE APP

Fig. 4: Acoustic Landmark Locator Mobile Phone App
Overview

The ALL mobile phone app was used to capture and
process the current sound levels, using the mobile phone’s
microphone. An overview of the ALL mobile phone app can be
seen in Figure 4. One second of audio samples were captured
using the microphone. The sampling rate was at 44 kHz, which
allow audio frequencies up to 22kHz to be measured. The
acoustic profile of the captured audio samples was computed
by calculating its power spectrum. The mobile phone app
would then apply a moving average of five frames, to the power
spectrum. This was repeated for until there was sufficient data
samples to determine a match. The mobile phone then used
the preprocessed Encog neural network kernel to classify the
room location. The mobile phone user’s location would then
be displayed, as shown in Figure 5.

TABLE I: Acoustic Landmark Locator Correct Matches

Landmark Correct Match (%)

A 91
B 90
C 99
D 71
E 71

TABLE II: Landmark Characteristics

Landmark Type Size Flooring

A Room Large (15m x 15m) Carpet
B Room Medium (15m x 5m) No Carpet
C Room Medium (15m x 6m) Carpet
D Corridor No Carpet
E Corridor No Carpet

VI. EVALUATION

The ALL was tested in an indoor environment as shown in
Figure 3. The test areas were the main corridor and rooms. We
tested the ALL by having a user walk through a known path
whilst carrying a mobile phone. In Figure 3, the user walked
from Room C, through corridor D, Room B, corridor E and
room A. The tests were conducted during normal business
hours, on week days and so consisted of people walking
through the corridors and utilising the test areas. We consider
the test environment to be realistic for evaluating the ALL. The
duration of the test path track was between 5 to 10 minutes
(including time for ground truth measurements). Table II lists
for each landmark, the type, size and flooring type (carpet or no
carpet). Table I shows the correct match percentage for each
landmark tested. The correct match refers to the percentage
match to a landmark acoustic profile. The ALL smartphone
app was able to successfully determine a person’s location,
in all test areas. For landmark B and C, the matches were
90% and 99%. The match for landmark C was higher than
for landmark B. This can be due to the presence of carpet in
Landmark C, which would reduce the amount of reverberation.

A. Landmark Occupancy Effects

We measured the acoustic profile of landmark C (room C),
with different occupancy levels (number of people present in
room). The landmark acoustic profile of Landmark/Room C
was measured in the middle of the room, for a period of 10
minutes. Figure 6 displays the landmark acoustic profile for
when the room is empty. Figures 7 and 8 show the acoustic
profiles for when the room has a small occupancy and when
it is half occupied. The presence of higher frequencies above
1kHz can be seen in Figures 7 and 8, was due to the presence
of people which distorts the landmark acoustic profiles. Using
an artificial neural network for classification, would allow the
ALL to still determine the correct landmark.

VII. CONCLUSIONS AND FURTHER WORK

We developed the ALL to determine a person’s current in-
door location, such as a room or corridor within a building. The
ALL used mobile phone based acoustic sensing to determine



Fig. 5: Acoustic Landmark Localiser Mobile Phone App

Fig. 6: Acoustic Profile of Landmark (Room C) with no occupancy

Fig. 7: Acoustic Profile of Landmark (Room C) with small occupancy

Fig. 8: Acoustic Profile of Landmark (Room C) with half occupancy

a person’s location. The ALL used an artificial neural network
based classifier to determine the most likely landmark that
the user was near. The ALL classifier was implemented using
the Encog Machine Learning Framework. For each landmark
used, an acoustic profile was measured and used to train an
Encog neural network algorithm. The ALL classifier would
then determine which landmark the user was in close proximity
to. Once the neural network classifier was trained, the kernel
was saved and loaded into the ALL mobile phone app. The

ALL mobile phone app used the trained neural network’s
kernel to determine the user’s room location.

The ALL was tested in an indoor environment of a corridor
and three rooms. Our tests show that the ALL mobile phone
app was able to successfully determine the location of the
person carrying the mobile phone, in all test areas. It was also
found that the presence of people does distort the landmark
acoustic profiles but the ALL classifier was still able to



correctly determine the person’s position.

Further work will involve investigating how other ma-
chine learning approaches can be used to better improve
position accuracy and increase the number of sample spaces
significantly. We will also look into creating and updating,
in realtime, acoustic profiles for use in acoustic landmark
localisation.Other avenues of investigation will also look at
how 2-dimensional localisation can be achieved with additional
acoustic sensing information.
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