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Abstract

For humanoid robots to replace humans in dan-
gerous environments, they require a robust fall
prevention system that can detect falls, prevent
major damage and recover back up to continue
on with the task. This paper introduces a sys-
tem that is capable of fall detection, mitigation
and recovery in a robot equipped with walk-
ing sticks. Walking sticks allow the humanoid
robot to extend its support polygon in a fall.
Using IMU data and kinematics, the orienta-
tion of the robot is used to detect if external
disturbances would cause a fall. The required
position of the walking stick tips are calculated
to minimise the angle fallen before the system
is deployed. A recovery sequence is generated
to recover the robot to a stable state prior to
the disturbance. Hardware experiments on the
Robotis OP2 found the system was capable
of reducing the impact shock for forward falls
while standing and walking.

1 Introduction

Legged robots, compared to wheeled robots have sev-
eral features that make them ideal for traversing rough
terrain and for disaster relief applications since they are
able to step over obstacles and place their feet on small
footholds while maintaining a level body [Todd, 1985].

Humanoid robots, such as the Robotis OP2 shown
in Figure 1, are excellent candidates for deployment
in man-made environments containing stairs, doors and
controls designed for humans [Brooks et al., 2004]. The
DARPA Robotics Challenge (DRC) in 2015 used this
scenario as motivation. The challenge highlighted the
limited research in the field of fall detection, damage pre-
vention and recovery as numerous robots fell and only
one was undamaged enough to stand up.

Of the previous research conducted, different strate-
gies have been proposed to prevent a robot damaging

Figure 1: Robotis OP2 platform used for experiments.

itself or its surroundings. Inspired by judo martial-
arts techniques ukemi, [Fujiwara et al., 2002; 2003;
2006] implemented a controller to limit damage by falling
on specific shock-absorbing body parts. [Ha and Liu,
2015] extended these fall techniques to a generalised al-
gorithm capable of multiple contact points planning for
a variety of external disturbances to achieve zero final
momentum. A tripod fall [Yun and Goswami, 2014]

was designed to keep the centre of mass (CoM) rela-
tively high to reduce the amount of potential energy
(PE) converted to kinetic energy (KE) during a fall.
This was achieved through using a swing leg and two
arms as the three points of contact. [Yun et al., 2009;
Yun and Goswami, 2012; Goswami et al., 2014] imple-
mented a foot placement and inertia shaping controller
to change the fall direction to prevent damage to objects
around it. To detect instabilities in the robot, attitude
sensors are used in [Renner and Behnke, 2006] to clas-
sify disturbances and perform preventative actions. A



fall prevention system developed by [Park et al., 2015]

used an inertial-measurement unit (IMU) for detection
and a forward step with a swing leg to stop the robot
falling.

The use of walking sticks or canes is relatively new
within humanoid robots, with previous works focus-
ing on adapting the gait of the robot to utilise the
extra degrees of freedom for traversing rough terrain.
The ski-type walking approach [Wang et al., 2014;
Wang and Zheng, 2015] enlarged the support area and
stability margin of the robot using two canes. They
verified the optimal ‘crawl’ sequence and cane length
that increased stability assuming the arms are unable
to bear high loads. An adaptive algorithm was proposed
by [Kobayashi et al., 2014] to optimise stability and effi-
ciency across different terrain using a walking cane. The
cane was selected for preventative, cyclic or leg-like us-
age with each type increasing the load bearing of the
cane. SupraPeds [Khatib and Chung, 2014] added vision
and force sensors to actuated smart staffs for contact-
supported locomotion in unstructured terrain. Simula-
tion results showed the whole-body control framework
capable of multi-contact locomotion in 3D unstructured
terrain.

The rest of the paper is structured as follows: The
system and its components are introduced in Section 2,
Section 3 describes the experimental setup, with the re-
sults shown in Section 4. Section 5 discusses the results
and the conclusion follows in Section 6.

2 Fall Avoidance and Recovery System

A humanoid robot experiences various motions in normal
operation, as shown in Figure 2. Of particular interest
are the Unstable Standing and Unstable Walking states
which lead to Falling. Ideally, all falls should be Safe
Falls which allows for recovery back to Stable Standing.

Used extensively in legged robots is the support poly-
gon, defined as the convex hull of the contact points of
a robot to the ground [Kajita and Espiau, 2008]. Hu-
manoid robots are susceptible to falls because of the
small support polygon formed by the feet. Inspired by
multi-legged robots’ ability to traverse rough terrain due
to a large support polygon, bipedal robots can also en-
large this by increasing the number of contact points.
Observations in humans show crawling as a solution,
although this places excessive forces on the hand and
knee joints and necessitates a range of motion that most
bipedal platforms are not designed for. Another solution
is walking aids, used by the elderly and mountaineers,
allowing the body to remain vertical and increasing the
region of contact point positions. Walking aids can be
stowed during times the hands are required to complete
tasks, then reattached when fall prevention is required.
Using walking sticks for fall prevention allows the robot
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Figure 2: State diagram for the motion of a humanoid
robot. Normal operation exists in the four stable and un-
stable states using a balance controller. A fall controller
is required for large disturbances that cause a fall.

to continue walking in the more efficient bipedal mode
without the increased risk of falls. The idea of walking
aids is not new; however, the proposed system is the first
to the authors’ knowledge that describes using walking
sticks for fall prevention, damage reduction and recovery.

The Fall Avoidance and Recovery (FAR) system is
comprised of different subsystems as outlined in Figure
3. The main components: IMU Filter, Fall Classifier,
Fall Controller and Fall Recovery are described in detail
in the following sections.

2.1 IMU Filter

The IMU Filter passes the raw IMU data into filters
to provide orientation data for the Fall Classifier. Spe-
cially, six-axis IMU data (accelerometer and gyroscope)
is passed through low-pass infinite impulse response
(IIR) filters separately to reduce noise. The orientation
is calculated from the noise-reduced accelerometer and
gyroscope data independently. From the accelerometer,
Equation 1 for pitch and 2 for roll are used to calcu-
late the orientation. The gravity vector Gp is given by
[Gpx Gpy Gpz]T when rotation occurs.

tan(θxyz) =
−Gpx√

Gpy
2 +Gpz

2
(1)
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Figure 3: Overview of the FAR system.

tan(φxyz) =
Gpy

sign(Gpz)
√
Gpz

2 +Gpx
2

(2)

The angular velocities provided by the gyroscope are
integrated to get the orientation. A complementary filter
(Equations 3 and 4) fuses both of these calculated orien-
tation to provide a response that reacts quickly to dis-
turbances (high pass filter of gyroscope) while rejecting
the drift from the gyroscope (low pass filter of accelerom-
eter) [Calton, 2007]. Only the pitch and roll angles are
calculated as yaw is not required.

θ = α (θp + θ̇gyro × dt) + (1− α) θxyz (3)

φ = α (φp + φ̇gyro × dt) + (1− α) φxyz (4)

where α is the filter factor, (θp + θ̇gyro × dt) and

(φp + φ̇gyro × dt) are the integration of the angular ve-
locity from the gyroscope for orientation and θxyz/φxyz
are from Equations 1 and 2 respectively. The IMU Filter
outputs the orientation as filtered data for the rest of the
system to use.

2.2 Fall Classifier

The Fall Classifier detects falls using the orientation
from the IMU Filter. Humanoid robots have been mod-
elled using various inverted pendulum models (IPM)
[Orin et al., 2013] to simplify stability and fall analysis.
Previous models such as the linear IPM have assumed
the height of the CoM is much greater than the length of
the foot for the length of the foot to be negligible. This
assumption does not hold for robots with large feet such
as the Robotis OP2. Thus for a forward fall, the pivot
moves to the front edge of the feet. This can be extended

hCoM
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Figure 4: Inverted pendulum model (IPM).

to backwards and sidewards falls using the appropriate
edges of the feet.

Using the model, the CoM is located behind the unsta-
ble equilibrium point. The resultant equations of motion
(EoM) have a restoration force caused by gravity when
the CoM is behind the leading edge of the feet. This
necessitates bounds on the orientation of the robot to
ensure the equations remain valid.

The maximum angle the robot can tilt before it falls is
equal to the initial angle between the CoM and the front
edge of the feet given by Equation 5 and illustrated by
Figure 4. When this angle (θtip) is passed, the CoM is
no longer within the support polygon and a fall would
occur. This model can be used for fall detection for static
walking as the CoM is within the support polygon at all
times.

θtip =
π

2
− arctan

(
hCoM

La

)
(5)

In Equation 5, hCoM is the height of the CoM and La

is the distance from the front edge to the CoM in the
horizontal direction.

External disturbances that cause a fall are predicted
before θtip is reached by:

ω2
tip = ω2

0 +
2g

hCoM
(cos(θtip)− cos(θ0)) (6)

where θtip is the tip angle, θ0 is the current θ, ω is

the angular velocity (θ̇), ωtip is ω at θtip and ω0 is the
current ω. Using the current orientation and angular
velocity, the angular velocity at θtip can be calculated.
If ω2

tip > 0, the robot would continue to fall forwards
when θtip is reached resulting in a fall.

Once a fall is detected, the trajectory of the falling
CoM can be traced using the equation for an inverted
pendulum. The time elapsed for the CoM to fall a certain
angle is given in [Batista and Peternelj, 2006] as:



time =

√
hCoM

2g

∫ θfall

θ0

dθ√
ω2
0hCoM

2g + cos(θ0)− cos(θ)

(7)
where θfall is the fall angle. The fall angle is the

amount the robot falls before the sticks can be moved
to catch the robot from falling and is the angle at the
final position of the deployed system. This is called the
fallen deployed state. The variables that affect the de-
ployment time of the sticks to the required location for
a given θfall is given by:

time =
ωmmax

θjoint
+ treaction (8)

where ωmmax is the maximum speed of the motors,
θjoint is the maximum angle the joints move and treaction
is the reaction time calculated from the controller’s up-
date rate. θjoint is calculated through solving the inverse
kinematics (IK) for the arms given a value for θfall.

Equating 7 and 8 gives Equation 9 which is solved to
find the minimum θfall.

ωmax

θjoint
+ treaction = A

∫ θfall

θ0

dθ√
B + cos(θ0)− cos(θ)

(9)

where A =
√

hCoM

2g and B =
ω2

0hCoM

2g .

Equation 9 is adapted to Algorithm 1 where θfall is
increased until Equations 7 and 8 are equal. The trape-
zoidal rule is used for integration and θfall is checked to
be inside the working range of the system.

Algorithm 1 Algorithm for fall classifier

ωtip = detect(θ0, ω0);
if ω2

tip > 0 then
i = 0;
while f1 < f2 do

θi = θ(i) ∈ [θ0, π/2];
f1(i) = dtime

2 [fall(θi, ωi) + falli−1] + f2(i− 1);
f2(i) = joint(θi);
θfall = θi;
i++;

return θfall;

detect(θ0, ω0) is Equation 6 with f1(i) Equation 7 and
f2(i) Equation 8. The algorithm assumes that the time
required to move the arms is initially greater than the
time for the robot to fall, and that the gradient for Equa-
tion 7 is greater than Equation 8 such that an intersect
exists. This is generally the case as treaction is non-zero
and constant. In the event of no intersect, the external

disturbance is too large for the system to prevent a fall.
The value of θi at which the functions intersect is θfall.

With θfall calculated, the location for the walking
stick tips in the global coordinate frame is given by:

xsticks = hCoM × sin(θfall) + xsf (10)

where xsf is a hand-tuned safety factor to prevent the
robot from tipping over after the walking sticks have de-
ployed. A transformation is used to convert the tip posi-
tion from the global frame to the ‘fallen’ robot’s frame,
given by:


x′

y′

z′

1

 = [Rot(z, θfall) · Trans(0, hCoM , 0)]−1


xsticks

0
0
1


(11)

where Rot(z, θ) is the homogeneous transformation
matrix for a rotation about the z-axis and Trans(a, b, c)
for a translation. The (x, y) location of the tip and θfall
of the fallen robot are then sent to the Fall Controller
and Fall Recovery.

2.3 Fall Controller

The Fall Controller receives the required tip positions
from the Fall Classifier and calculates the required joint
angles using inverse kinematics. An IK solver is required
with the same degrees of freedom (DOF) as the number
of joints in the plane of the fall. For a forward fall in
robots that have two pitch joints, such as the Robotis
OP2, the required two DOF IK solver is given by:

θ2 = atan2

±
√

1− x2 + y2 − l21 − l22
2l1l2

,
x2 + y2 − l21 − l22

2l1l2


(12)

θ1 = atan2(y, x)− atan2(k2, k1) (13)

where k1 = l1 + l2 cos(θ2) and k2 = l2 sin(θ2), and
θ1 and θ2 are the shoulder and elbow pitch joints re-
spectively. The degrees of freedom of the IK solver is
dependent on the robot platform used and direction of
the fall. The Fall Controller commands the joint motors
to move to the required angles instantly.

2.4 Fall Recovery

A recovery sequence by the Fall Recovery is activated
once the Fall Controller has deployed the walking sticks.
The recovery sequence moves the robot back into a sta-
ble standing state where it can continue on with the task.
The robot’s orientation must remain constant before en-
tering Fall Recovery to ensure the robot is stationary



Table 1: Start and end times for each stage of the recov-
ery sequence across one and a half periods.

Start End Description

0 0.5 right leg move forwards
0.5 1.0 left leg move forwards
1.0 1.5 both legs stand up
1.25 1.25 move arms back

in the fallen deployed state before attempting recovery.
The sequence is generated from sine waves across one
and a half periods following the steps in Table 1.

The sine waves provide a smooth trajectory for the
foot tip’s six DOF IK solver. The sequence assumes
that once both legs have moved individually, the feet
are flat on the ground, regaining the support polygon
with the CoM inside. The sequence starts in the fallen
deployed state by moving each leg individually forward
before standing up. The arms are moved back instanta-
neously while the robot is standing up to shift the CoM
backwards while not dragging along the ground. This
sequence allows the robot to continue moving forwards
even after a fall, saving energy. While recovery is ac-
tive, the Fall Controller is disabled until the sequence is
completed.

2.5 Optimal Walking Stick Length

The performance of the FAR system is reliant on the
length of the walking sticks. To select the optimal length
(lsticks) the performance of the system for the parame-
ters in Table 3 was evaluated. Figure 5 outlines the op-
timal region for lsticks for the initial case of θ0 = π/180
and ω0 = 0. The fall angle was incrementally increased
for the Fall Controller to solve the required joint angles.
The system can only deploy the sticks for falls within a
range of θfall, which is bounded by ‘Min Fall’ and ‘Max
Fall’ in Figure 5. The ‘Joint Speed’ comes from solving
Equation 9 for the speed required, averaged with reac-
tion time, to move the arms for a particular θfall. If the
sticks are too long they would touch the ground before
the robot has passed θtip or if the sticks are too short
the robot would already be on the ground. Table 2 lists
the factors that need to be considered when selecting the
optimal stick length. The optimisation does not produce
an optimal point but shows the region for choosing the
stick length. An estimate of the ‘Joint Speed’ can be
used to select the optimal stick length for the system
using ‘Joint Speed (Min Fall)’ as the minimum speed
required for a given stick length in Figure 5.

Figure 5: Performance of various walking stick lengths.

Table 2: Factors of selecting optimal walking stick
length.

Factor Description

θfall Maximise the effectiveness of the sys-
tem by ensuring the region of θfall con-
tains most/all of the falls that external
disturbances would cause

Joint speed speed of motors and reaction time de-
pendent on platform

3 Experiment Evaluation

3.1 Platform

The FAR system was implemented on the Robotis OP2
platform running the Robot Operating System (ROS)
architecture. The Robotis OP2 shown in Figure 1 is a
20 DOF (2 x 6 DOF leg + 2 x 3 DOF arm + 2 DOF
neck) 454.5 mm tall humanoid robot with a dual core
Intel Atom processor. Implementing the system in ROS
allows each component to be controlled and monitored
individually.

Modifications were required to equip the robot arms
with fibreglass walking sticks. 3D printed plastic holders
were attached, shown in Figure 6, to allow the length of
the walking sticks to be varied and fixed with screws.

The parameters used for the FAR system on the Robo-
tis OP2 platform is listed in Table 3.

3.2 Experimental Setup

To test the FAR system, the robot was subjected to
significant external disturbances. A pendulum test rig
shown in Figure 7 was constructed to ensure repeatable
disturbances in evaluating the system’s performance.
The pendulum’s release point was preset so the contact



Figure 6: Walking stick holders.

Table 3: Parameters of the hardware platform.

Parameter Value

hCoM 0.318 m
La 0.052 m
θtip 9.29◦

α 0.96
ωmax 5.0 rad/s
treaction 0.15 s
xsf 0.100 m
lsticks 0.150 m

force remains constant. Two pendulum release points
were tested with a steel cap safety boot as the pendu-
lum mass. Table 4 lists the specifications of the rig.

Table 4: Specification of experimental setup.

Specification Value

Mass of pendulum 0.717 kg
Length of pendulum 0.930 m
Height of pendulum pivot 1.300 m
Position 1 (P1) release angle 17.55◦

Position 2 (P2) release angle 26.90◦

∆ heightP1 0.042 m
∆ heightP2 0.098 m

Three experiments were conducted to evaluate the
performance of the FAR system. With the pendulum at
the lower position (P1), the system was tested while the
robot was standing. For the higher position (P2), both
standing and walking were tested. These experiments
were repeated without the FAR system for comparison.

Impact shock is the performance criteria used to eval-
uate the system. It is a suitable candidate as rapid de-
celeration can damage components. The internal IMU
is used to record the change in acceleration experienced
during the fall.

Figure 7: Experimental setup.

4 Results

The three experiments tested the system across different
scenarios1. Table 5 lists the results for the different con-
figurations. Using data collected during the Position 2
standing tests, the reaction time of the FAR system was
calculated. These times are presented in Table 6.

Table 5: Results of impact shock (g-force).

Without FAR With FAR Decrease

P1 Standing 1.619± 0.045 1.347± 0.039 16.8%
P2 Standing 1.710± 0.065 1.357± 0.035 20.6%
P2 Walking 1.803± 0.107 1.320± 0.042 26.8%

Table 6: Reaction time of system.

Reaction time

Fall detected 24± 5 ms
FAR deployed 132± 26 ms

1Please visit https://research.csiro.au/robotics/bipedal/
for video showing experimental results.



3.5 4.0 4.5 5.0
Time (sec)

−20

−15

−10

−5

0

5

10

15

20

Li
ne

ar
 A
cc
el
er
at
io
n 
(m

/s
2
)

Linear accel (x)
Linear accel (total)
Angular vel (pitch)

−8

−6

−4

−2

0

2

4

6

8

A
ng

ul
ar
 v
el
oc
ity
 (
ra
d/
s)

Fall Classifier: P1 Standing w/o FAR

(a) P1 standing without FAR
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(b) P1 standing with FAR
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(c) P2 standing without FAR
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(d) P2 standing with FAR
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(e) P2 walking without FAR
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(f) P2 walking with FAR

Figure 8: Data collected comparing the acceleration experienced by the robot without (a,c,e) and with (b,d,f) the
FAR system. The maxima and minima of the total acceleration (green) are analysed for the impact shocks. The
negative x-direction of linear acceleration points forwards from the robot’s body which is not parallel to the ground
when stationary.



(a) Without FAR

(b) With FAR

Figure 9: Final position after external disturbance. In
(b), the Fall Controller has deployed the sticks but be-
fore Fall Recovery is activated. This is the fallen de-
ployed state (θfall).

5 Discussion

The results demonstrate the system reduces the impact
of a fall. In constantly calculating the angular velocity at
θfall, the robot maximises the time it has to deploy the
sticks to the required position. Observations of the Fall
Classifier detecting a fall using only θfall as a threshold
value showed the system would fall to the ground before
the walking sticks could start to deploy. This shows that
the ability to detect a fall before it happens increases the
chances of mitigating the fall.

The walking sticks decreased the falling distance of
the robot, with the CoM with FAR 200 mm higher than
without. This is shown in Figure 9. The results of lower
impact shocks supports the theory of the tripod fall in
[Yun and Goswami, 2014] where the authors suggest con-
serving the PE reduces the KE at impact. The fallen de-
ployed state is a new configuration that is able to reduce
the KE of the system through an elevated CoM.

IMU data shows the robot without FAR experiences
free-fall with the total linear acceleration near zero as
shown in Figure 8a and 8c. Although the peak acceler-
ations with FAR seems to be higher, such as comparing
Figure 8a and 8b, this is due to the IMU measuring
the gravity reaction force on the the robot which has a
greater effect on with FAR than without.

The selection of the optimal walking stick length varies
from previous works, most notably [Wang et al., 2014],
due to the different variables that affect its selection.
While a longer length is advantageous for enhanced lo-
comotion, it could hinder the deployment of the sticks
in fall prevention. This relationship, shown in Figure
5, highlights the fact that shorter sticks gives the sys-
tem longer time to respond. However, a longer length is
ideal to reduce θfall, provided system deployment is not
impeded.

5.1 Limitations

The Fall Controller does not consider the trajectory of
the walking sticks when it is deployed. Thus, collision
with the ground before θfall may occur. This would
cause the robot to topple forwards along the sticks. To
reduce this possibility, the stick length should be short-
ened.

Fall Recovery is currently unable to consistently re-
cover from external disturbances where θfall is too large.
Experiments on the Robotis OP2 showed the recovery se-
quence is limited by the ability to move the legs so that
the feet are beneath the CoM. This is due to the self-
collision of the legs and the body at the hip joint. To
overcome the current limitation of the sequence, an ad-
ditional step is required to either: use the sticks to push
the upper body backwards to be upright for the hip joint
to increase its range, or to drop the robot on its knees
and push with the sticks to rock the robot backwards
onto its feet.

6 Conclusion and Future Work

This work proposed a fall prevention system that utilised
walking sticks to reduce the impact of falls. The Fall
Classifier detects external disturbances that would cause
a fall before the tip angle is reached, and the Fall Con-
troller moves the walking sticks the shortest distance to
stop the robot falling. A recovery sequence by the Fall
Recovery returns the robot to a stable standing position.
The proposed system was tested on the Robotis OP2 and
showed successful results of the system in reducing the
impact shock.

In future work, a mass-spring-damper model will be
implemented on the arms and the system will be mod-
ified for directional falls. For directional falls, an ad-
ditional Fall Direction component before the Fall Clas-
sifier is required to detect the fall direction along the
transverse plane and select the most appropriate param-
eters for the IPM.
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