
Real-Time Stabilisation for Hexapod Robots

Marcus Hörger, Navinda Kottege, Tirthankar Bandyopadhyay, Alberto Elfes,
and Peyman Moghadam

Autonomous Systems, CSIRO Computational Informatics,
Queensland Center for Advanced Technology, Brisbane, QLD 4069

Abstract. Legged robots such as hexapod robots are capable of nav-
igating in rough and unstructured terrain. When the terrain model is
either known a priori or is observed by on-board sensors, motion plan-
ners can be used to give desired motion and stability for the robot. How-
ever, unexpected leg disturbances could occur due to inaccuracies of the
model or sensors or simply due to the dynamic nature of the terrain. We
provide a state space based framework for stabilisation of a high dimen-
sional multi-legged robot which detects and recovers from unexpected
events such as leg slip. We experimentally evaluate our approach using a
modified PhantomX hexapod robot with extended tibia segments which
significantly reduces its stability. Our results show that roll and pitch
stability is improved by 2× when using the proposed method.

1 Introduction

Legged robots such as hexapods shown in figure 1 are well suited for navigating
in rough and uneven terrain that can be challenging to conventional wheeled or
tracked vehicles. These robots can adapt to the complex terrain by adjusting
their gait patterns, footfall trajectory or footholds. For effective and stable nav-
igation in such terrain, the robot requires a mechanism to detect and recover
from unexpected events such as leg slippage. In the event of a slip, identifying
that the slip has occurred and subsequently taking corrective actions to move
to a stable configuration allows it to continue its navigation task. Often such
stabilisation requires the control of the whole system rather than just the indi-
vidual leg that has slipped. This implies that a simple servo control on the leg
motors alone are incapable of achieving the desired outcome.

In this paper, we frame the problem of hexapod stabilisation as a path finding
problem from a critical region to a stable region in the configuration space of the
robot. Such a formulation allows us to take advantage of the whole body kine-
matics in generating stable postures for future slip proof steps without explicit
knowledge of the local terrain.

There are broadly two approaches in attaining hexapod locomotion: when
terrain is unknown, the hexapod executes repeated pattern of coupled footfall
or a gait with little feedback [1]; and when the terrain model is completely known
or is observed by on-board sensors with sufficient accuracy, the footfalls are com-
puted to give desired motion and stability [2] [3] [4] [5]. The former approach

2 Hörger et al.

(a)

Extended tibia
segments

(b)

Fig. 1. Modified PhantomX hexapods (a) with additional computing and sensing, (b)
with extended tibia segments which reduces its stability during locomotion.

relies on the stochastic nature of the hexapod’s interaction with the terrain to
recover from slips and trips. However, there is no guarantee of the approach
working in very challenging environments like steep slopes or on slippery sur-
faces in the event of unexpected disturbances in the leg-terrain interaction such
as leg slips or changes in the body orientation due to incomplete and uncer-
tain terrain information. In order to navigate such challenging terrains, a fast
reactive approach is necessary which is able to compensate these unforeseen dis-
turbances. Another approach uses a set of behaviours to control a hexapod robot
[6][7]. In order for a robot to adapt its behaviours, it must have the ability to
autonomously detect and classify terrain types [8]. An issue which is not ade-
quately addressed in such an approach is the the effects due to terrain attributes
such as loose soil or slippery surfaces causing the robot to slip, since the actions
necessary to stabilise the system might not be defined in the set of behaviours.

Stable footfall generation for a known terrain is computationally expensive
due to the high dimensionality of the planning space. When a slip occurs, the
planner often has to recompute the footfall from a new post-slip configuration.
In this paper, we propose an algorithm to detect and arrest the slip in real-time
without knowledge of the local terrain before the body moves to an unstable con-
figuration, potentially damaging itself, or to a configuration from where recovery
is difficult.

2 Technical Approach

The complexity of the legged robot locomotion on uneven terrain comes from the
high degrees of freedom that need to be controlled using imprecise knowledge of
the environmental interaction during the robots gait. The challenge arises not
only for planning footfalls on a high DoF robot but also while executing the
footfalls in the presence of unexpected events. While unknown terrain poses a

Stabilisation for Hexapod Robots 3

great challenge to legged locomotion, even with full knowledge of the terrain, the
robot encounters inherent slips due to loose gravel, slippery vegetation, uneven
surfaces etc. Many approaches [9][6][10][4] have attempted to provide stability
to the body by taking corrective actions to control the slipping joint or the leg.
While individual controls can be added to each leg to prevent its slip, often the
stability of the whole body is dependent on all leg positions in a coupled manner.
Fixing the slip of one leg may not inherently provide stability. Due to this we
need to provide control in the higher dimensional space.

In this preliminary study we take the first steps towards developing a frame-
work for high-dimensional control of the hexapod to prevent slipping in planar
terrains. Slipping on a simplified planar terrain model gives us an opportunity
to study the high-dimensional slip control without the complexity of unknown
terrain.

2.1 Formulation

In this study we focus on a hexapod robot with each leg having 3 actuators giving
18 joints to control. The state space C for the hexapod then lies in 18 dimensions.
C consists configurations which satisfy the joint limits, without considering col-
lisions of the vehicle with itself or the environment. Even with tight joint limits,
not all configurations in the state space C are valid for stable navigation.

In this work we only look at quasi-static walking gaits, i.e., at any configura-
tion of the robot during gait execution, the robot is inherently stable. While we
ignore any dynamic gaits, we believe that our framework lends to an extension
for dynamic gaits in a straightforward manner.

A main characteristic of the hexapod leg slip during gait execution is the
foot tip position moving away from the planned footfall during the support
phase of the gait cycle. When this happens, the support polygon gets skewed
and often leads to instability of the whole robot. Another characteristic of leg
slip is sudden change in body orientation. This can be detected in body roll,
pitch or a combination of both depending on the number and position of the
slipping legs. In this study we check for the position of the foot tips and the
body orientation compared to a small tolerance around a desired foot tip and
body orientation to satisfy the stable configuration. While this check could be
extended to the rate of change of the tip position and orientation error, in this
study we focus on the measure of error and not its rate of change.

To satisfy the footfall position and the body orientation, we use the 6-
dimensional world task space T , in which we define constraints on the tip position
and body orientations that limit the planning in C to desired tip and body ori-
entations in T . These constraints generate a desired region Tconstr inside T . We
define constraining cuboids Ti with edges dx, dy and dz for the desired tip po-
sition for each leg i, capturing the full span and an operational tolerance of the
tip position during the gait cycle. Furthermore, we formally define two frames: a
body frame B and a local frame L both with origins at the centre of the robot.
The center could be the center of mass or any other suitable origin on the body.
L is a 3-dimensional frame with its x, y plane being parallel to the ground plane.

4 Hörger et al.

The body frame B is defined such that the x, y plane is congruent to the plane
through the body. Note that the tip positions are expressed in L. The orientation
of the body is therefore defined as the orientation of B about L.
Let θr and θp be B’s roll and pitch angle about L. By imposing constraints Θ
on θr and θp, we define

Tconstr = (Tn, Θ) (1)

with Tn = (T1, ..., T6), where (T1, T2, ...) are the space of allowed tip position
for the corresponding legs. Figure 2 illustrates the constraint cuboids around
the initial tip positions and the body orientation constraints. Any configuration
in C that does not satisfy the tip position or body orientation constraints are
discarded during planning, thus, Tconstr induces a manifold Mconstr such that

Mconstr = {c ∈ C | fTC (c) ∈ Tconstr} (2)

with fTC being a mapping from C to T . We call a configuration c stable if c ∈
Mconstr, unstable otherwise.

During a stable gait, the robot’s foot tip positions follow a precomputed
trajectory. For a tripod gait, 3 legs move at a time while for a wave gate one leg
moves at a time. The stationary legs provide stable support for the body. In this
study, we focus on the tripod gait, but the approach is applicable to any other
gait with minimal modifications to our implementation.

Dz

Dy

Dx

θp
c

θp
c

xL

zL

yL

oL

θr
c

θr
c

Leg n

Tn

Fig. 2. Foot tip constraint cuboids T1−6 (Dx × Dy × Dz) and body orientation con-
straints Θ = (θcr, θ

c
p) shown with respect to configuration of the hexapod robot.

Stabilisation for Hexapod Robots 5

xL

zL

yL

oL

Dy

Dx

Dz

dx

dy

dz

dy

Dy

dz
Dz

Fig. 3. Detailed illustration of foot tip constraints with cuboid centred at the initial
position of foot tip.

2.2 Solution Approach

We start with the assumption that any stable configuration has a neighbourhood
in C that is stable. During the stable gait execution, the body moves through a
periodic cycle of stable states ci ∈Mconstr.

During a slip event, as the leg tip moves closer to the boundaries of Tconstr,
the robot configuration ccurrent moves closer to the boundary of Mconstr. Our
overall objective of stabilisation is to keep the body configuration inside Mconstr

and react, when the configuration ccurrent travels outside Mconstr. To do so,
we cache known stable configurations in the neighbourhood of the gait cycle in
Mconstr offline and at run time, when the robot slips, quickly find a path from
ccurrent back into a stable configuration cs ∈ Mconstr. One problem with that
approach is that the configuration cs might be too close to the boundaries of
Mconstr such that from cs, even a slight disturbance might push the configuration
outside Mconstr again. In order to prevent such situations, we try to restrict cs
to a much smaller region within C which has a sufficient distance to the bound-
aries of Mconstr. This is achieved by adding an operational tolerance to Tconstr
yielding Tstable = (T ∗

n , Θ). T ∗
n consists of a second set of tip constraint cuboids

(T ∗
1 , ..., T

∗
6) with dimensions dx, dy, dz, where 0 < dx, dy, dz < Dx, Dy, Dz.

Figure 3 illustrates the second set of tip constraint cuboids. Tstable induces a
smaller manifold Mstable ⊂Mconstr.

Stable configuration caching We are interested in stable configurations which
are close to the known stable configuration cycle. Thus, instead of randomly
selecting a configuration inside Mstable to connect to, the algorithm selects a
configuration c ∈ Mstable within a certain neighbourhood of the current config-
uration cycle. However, sampling Mstable can be a difficult task. The shape and

6 Hörger et al.

properties of Mstable depends on the dimensions of the tip position constraint
cuboids defined in T . A naive sampling technique would be to use rejection
sampling by uniformly picking a sample c ∈ C and check whether

fTC (c) ∈ Tstable (3)

This sampling techniques samples the full state space C and rejects samples
which lie outside Mstable. Since the volume of Mstable is unknown a priori, it
could be the case that it is only a small fraction of the volume of C. In those
cases, rejection sampling fails to sample a number configuration candidates inside
Mstable within a reasonable amount of time. Therefore we generate a point cloud
P of configurations inside Mstable offline, from which the algorithm can select a
configuration to connect to during run-time.

Another approach is to grow a space filling tree, in our case an RRT, from
a known stable configuration (possibly an initial state or a known home state)
inside Mstable. The nodes generated by RRT are then used as Mstable samples.
This techniques quickly generates n samples inside Mstable, however, it suffers
from the same limitations of RRT. Despite its probabilistic completeness, RRT
performs poor in complex environments with narrow passages. Several techniques
have been proposed to improve sampling under the occurrence of narrow pas-
sages, such as filtering or adaptive sampling techniques [11] [12] [13] or retraction
based approaches [14] [15] [16] [17] [18].

We are especially interested in regions inside Mstable which can be reached
from a known path inMstable defined by a gait cycle of the vehicle, not necessarily
a single initial configuration. For this we pick n uniformly spaced samples from
the configuration cycle while the robot performs a specific gait (e.g. tripod gait).
These n samples are then used as seeds for an RRT forest with n trees. From
each seed a tree is grown inside Mstable with a predetermined number of nodes,
using the standard RRT algorithm [19]. The nodes of the generated RRT forest
form a point cloud P within Mstable. These points are potential candidates the
system can connect to when the task space constraints are violated. Figure 4
illustrates the offline generation of P using RRT.

Run time stabilisation During run-time, when the current configuration
ccurrent is inside Mconstr, the algorithm populates a list A with sets of sta-
ble configurations located in the neighbourhood of the current configuration
ccurrent (figure 5). This is done by sampling k points from P that are within a
hypersphere with radius r around ccurrent. Recall from 2.2 that the P entirely
lies within Mstable. The sampled set of points P k ⊂ P is then appended to the
list. Algorithm 1 shows the population of the list during run-time. The function
samplePointcloud(r) selects P i ⊆ P such that

P i = {p ∈ P s.t ||p− ccurrent|| ≤ r} (4)

where ||.|| is a standard Euclidean distance metric. Out of P i, randomSelect(set,
k) randomly selects k points. This set P k ⊂ P i is appended to the list of stable
sets.

Stabilisation for Hexapod Robots 7

Fig. 4. Illustration of the sampling method based on the RRT forest approach to
obtain a point cloud of stable configurations. The outer shading shows the area within
C which are unstable regarding the task space constraints Tstable. The green line shows
the path inside Mstable for a specific gait cycle. The red dots are the seeds from which
the RRT trees are grown inside Mstable

Algorithm 1 populate list

1: A← []
2: while ccurrent is stable do
3: P i ← samplePointcloud(r)
4: P k ← randomSelect(P i, k)
5: P k.append(ccurrent)
6: A.append(P k)

Note that the population of the list only happens when ccurrent ∈Mconstr. If
this is not the case, the populate list algorithm is interrupted until the ccurrent
becomes stable again.

This list serves as a source for stable configurations the stabilisation algo-
rithm tries to connect to when the configuration becomes unstable. If this is
the case, the algorithm selects the last element An of the list (the last set of
known stable configurations). Within An, the algorithm selects the first config-
uration as cstable (line 4 in algorithm 2). Since the structure and connectivity
of Mconstr is unknown, instead of joining the states with a direct path, we use
RRTConnect [20] to find a path from ccurrent to cstable (function findStablePath
in algorithm 2). For details of RRTConnect, the reader is referred to [20] After
finding a path p connecting ccurrent and cstable the system executes p (function
execute(stablePath) in algorithm 2). In some cases, executing p doesn’t result in
the system to obtain a configuration c such that c ∈ Mstable, due to unconsid-
ered interactions of the robot with the ground. Instead c might still be outside
Mconstr after executing p. If this is the case, the algorithm successively selects
ci ∈ An as cstable, calculates p from ccurrent to cstable, and executes p. In case c
is still critical after connecting to each ci ∈ An, the next set An−1 in A is chosen
and the algorithm tries to connect to the ci’s within that set. This is repeated
until the system is in a stable configuration again.

8 Hörger et al.

Current configuration

Nearby stable configurations
within search radius

Cache of stable configurations A

AnAn-1An-2

Fig. 5. This figure shows how the cache of stable configurations is populated at run-
time with points from the point cloud P . Note that the current configuration (red dot)
does not necessarily have to be inside Mstable. The caching of stable configurations
happens as long as the current configuration is inside Mconstr

Algorithm 2 connect to c stable

1: listIndex← A.last()
2: setIndex← 0
3: while ccurrent is critical do
4: cstable ← A[listIndex][setIndex]
5: stablePath← findStablePath(ccurrent, cstable)
6: execute(stablePath)
7: setIndex← setIndex+ 1
8: if setIndex = k then
9: listIndex← listIndex− 1

10: setIndex← 0

3 Experimental Setup

3.1 Hardware

Our experimental setup consists of a modified PhantomX hexapod kit by Trossen
Robotics 1 using Dynamixel AX-18 servosmotors (3 per leg, 18 in total). We
have added a Pandaboard embedded computer running Robot Operating System
(ROS) and an SBG IG-500N attitude and heading reference system (AHRS)
on to our hexapod platform (figure 1(b)). The length of the tibia links have
been extended (140 mm→ 405 mm) in order to gain a broader range of unstable
situations. The robot’s body orientation is measured using the IMU of the AHRS.
The joint angles of the servomotors are received at a rate of 35 Hz and the IMU
data is received at a rate of 100 Hz. Figure 6(a) shows the control and data flow
between the hardware components.

1http://www.trossenrobotics.com

http://www.trossenrobotics.com

Stabilisation for Hexapod Robots 9

IMU

USB to Serial

Data
Control

UART

USB

Pandaboard Embedded
Computer with ROS

USB

WiFi

Laptop
Computer with ROS

WiFi

Onboard
Hexapod

Servos

(a)

Onboard Hexapod

Gait engine

High level control

IMU driver

Driver suite

Leg controller

Leg level control

Forward kinematics
solver

Inverse kinematics
solver

Kinematics solvers

Body trajectory
planner

Leg trajectory
planner

Motion validator

Motion planning

Servo driver

(b)

Fig. 6. Hardware (a) and software (b) block diagrams showing control and data flows
of the hexapod system.

3.2 Software architecture

The software architecture in which the proposed stabilisation method is embed-
ded is shown in figure 6(b). It consists of a high level gait engine which generates
the body locomotion during run-time, by defining desired tip positions for a given
gait pattern. These tip position goals are sent to the leg controllers which cal-
culate a trajectory from the current tip position of leg i to the commanded tip
position, using a leg trajectory planner and an inverse kinematics solver. For
the proposed stabilisation mechanism, the gait engine module monitors the cur-
rent state of the system (joint angles from the servomotors and body orientation
obtained from the on-board IMU) and utilises OMPL (Open Motion Planning
Library) to determine if a state is stable or not. It also uses OMPL and its RRT-
Connect implementation to compute a path in Mconstr from a configuration
outside Mconstr to a stable one inside Mstable.

3.3 Constraint dimensions

The dimensions of the foot tip constraint cuboids have an significant influence on
the performance, since these dimensions determine the time it takes for the sys-
tem to detect a leg slip. If the constraints are too narrow, even slight deviations
of the tip positions will lead to a slip detection. On the other hand, if the dimen-
sions of the cuboids are too large, a slip gets detected too late for the system to
stabilise the robot. The dimensions of the foot tip constraint cuboids T ∗

1−6 and
T1−6 used during our experiments are dx = 100 mm, dy = 60 mm, dz = 140 mm

10 Hörger et al.

Fig. 7. A sequence of frames showing an experiment where the front left foot of the
robot steps on an aluminium plate causing the leg to slip away during a gait (top row).
Our stabilisation system allows the robot to recover and continue the gait (bottom
row).

and Dx = 120 mm, Dy = 80 mm, Dz = 160 mm respectively. Body orientation
constraints Θ used during our experiments are θcr = ±5◦and θcp = ±6◦.

3.4 Performance metrics

In order to be able to define metrics which measure the quality of the proposed
stabilisation approach, we need to gain insight about what happens with the
robot during a leg slip when no stabilisation is performed. A leg slip induces
unexpected movement of the body, resulting in significant variances of the body
orientation, as it can be seen in figure 8.

Slip onset

Gait phase

0 2 4 6 8 10 12

20

15

10

5

0

-5

-10

-15

-20

-25

Pitch

Roll

An
gl

e
(d

eg
re

es
)

Time (s)

Fig. 8. This figure shows the body’s roll (red) and pitch (green) orientation in degree
during a gait phase and a leg slipping event without stabilisation

These uncontrolled variances in the body’s orientation angles can significantly
impact the stability of the robot. Therefore we aspire to limit sudden changes

Stabilisation for Hexapod Robots 11

in the orientation of the body. In other words, the standard deviation of the
orientation of the body frame B about the local frame L gives us a metric
regarding the stability of the robot.

Another performance metric is the time trec it takes the system to stabilise
the robot after a leg slip has been detected. This is the time interval between
a stability criterion being violated to the time the robot is able to continue its
locomotion with the specified gait pattern. The longer the robot continues to slip,
more difficult it is to recover to a stable state and it becomes more vulnerable
to damage either by toppling over or stripping gears. trec is calculated as

trec = tc − ts (5)

where tc is the time when the robot continues its locomotion, and ts the time
when a leg slip gets detected. Note that trec includes all stabilisation attempts
since the system may perform multiple stabilisation attempts when its still in
an unstable state after a particular recovery phase.

-15

-10

-5

0

5

10

15

20

25

0 200 400 600 800 1000 1200

Sampling steps

R
ol

l a
ng

le
 (d

eg
re

es
)

Tip constraints only

No stabilisation

Tip+Orientation constraints

Orientation constraints only

Slip onset

Gait phase

(a)

-20

-15

-10

-5

0

5

10

15

0 200 400 600 800 1000 1200

Sampling steps

Pi
tc

h
an

gl
e

(d
eg

re
es

)

Slip onset

Gait phase

Tip constraints only

No stabilisation

Tip+Orientation constraints

Orientation constraints only

(b)

Fig. 9. Body roll (a) and pitch (b) during a leg slipping event without stabilisation
and with stabilisation using tip, orientation and both constraints.

3.5 Experimental procedure

In our experiments the hexapod walks straight using an alternating tripod gait.
During its locomotion we let it step on a slipping obstacle (a small aluminium
plate with a low friction coefficient) with a specific leg, causing the interacting
leg to slip away from its intended foothold position (figure 7). This causes the
whole robot to become unstable and, in certain cases, without our stabilisation
system, the body to topple over. We repeat that experiment three times for
each leg. This experimental design is repeated for each of the two task-space

12 Hörger et al.

constraints (tip position cuboids and orientation constraints) and a combina-
tion of the two constraints. We also conducted a set of experiments where the
stabilisation system was turned off. The standard deviations of body roll and
pitch angles are recorded for each of the experimental runs and presented in the
following section along with a comparison of recovery times for different stability
constraint combinations.

4 Results and Insights

Tables 1, 2, 3 and 4 show the standard deviation of the body pitch and roll angles
with respect to the local frame L during a leg slip and the subsequent stabilisa-
tion phase. The first column refers to the leg which was slipping. The second and
third column refers to the standard deviation of the respective angular direction.

The results in table 1 were obtained without any stabilisation, whereas for
the tables 2, 3 and 4 the proposed stabilisation approach used different task
space constraints (orientation constraints only, tip position constraints only, ori-
entation and tip position constraints).

It can be seen that the standard deviation for the roll and pitch angles
are significantly reduced using the proposed stabilisation mechanism. Using the
orientation constraints only had a higher overall standard deviation in roll and
pitch angles, followed by the tip position constraints. The best results were
obtained by using both types of task space constraints.

Table 1. Standard deviation of body roll and pitch (θr and θp) with no stabilisation
for a series a leg slipping experiments.

Slipping leg σθr σθp

Front left 3.65 ◦ 4.02 ◦

Front right 4.75 ◦ 5.21 ◦

Middle left 3.45 ◦ 4.12 ◦

Middle right 4.89 ◦ 4.76 ◦

Rear left 7.58 ◦ 8.93 ◦

Rear right 5.51 ◦ 6.96 ◦

Table 2. Standard deviation of body roll and pitch (θr and θp) with stabilisation using
orientation constraints only for a series a leg slipping experiments.

Slipping leg σθr σθp

Front left 1.03 ◦ 3.19 ◦

Front right 1.58 ◦ 2.36 ◦

Middle left 1.55 ◦ 3.09 ◦

Middle right 1.00 ◦ 2.65 ◦

Rear left 2.26 ◦ 2.26 ◦

Rear right 3.01 ◦ 2.80 ◦

Stabilisation for Hexapod Robots 13

Table 3. Standard deviation of body roll and pitch (θr and θp) with stabilisation using
tip constraints only for a series a leg slipping experiments.

Slipping leg σθr σθp

Front left 1.76 ◦ 3.17 ◦

Front right 1.30 ◦ 2.20 ◦

Middle left 1.92 ◦ 1.59 ◦

Middle right 1.70 ◦ 2.65 ◦

Rear left 1.28 ◦ 2.08 ◦

Rear right 1.75 ◦ 1.38 ◦

Table 4. Standard deviation of body roll and pitch (θr and θp) with stabilisation using
tip constraints and orientation constraints for a series a leg slipping experiments.

Slipping leg σθr σθp

Front left 1.74 ◦ 2.73 ◦

Front right 1.02 ◦ 1.65 ◦

Middle left 1.27 ◦ 2.07 ◦

Middle right 1.57 ◦ 1.82 ◦

Rear left 1.72 ◦ 2.63 ◦

Rear right 1.37 ◦ 1.48 ◦

Table 5. Mean recovery times trec for leg slip recovery for each leg with different
constraints along with the mean number of stabilisation attempts given within brackets.

Slipping leg
trec for tip and trec for tip trec for orientation

orientation constraints constraints
constraints only only

Front left 0.85 s (1.0) 1.06 s (1.3) 1.53 s (1.6)
Front right 0.89 s (1.0) 1.16 s (1.0) 1.93 s (1.6)
Middle left 1.26 s (1.0) 0.96 s (1.3) 1.92 s (1.6)

Middle right 0.52 s (1.6) 1.66 s (2.6) 1.79 s (2.0)
Rear left 0.72 s (1.6) 4.34 s (3.6) 1.87 s (2.0)

Rear right 1.49 s (1.3) 2.99 s (3.0) 1.96 s (1.6)

Table 5 shows the time trec it takes for the system to get back to a stable
state after a leg slip occurred and the number of stabilisation attempts, using
different constraints. This includes the time tconnect it takes for RRTConnect to
find a path from a state that violates the task space constraints to a state inside
the stable mainfold Mstable, and the time texec the system takes to execute that
path. On average, RRTConnect took 0.11 s until the algorithm found a path
back to Mstable. The table also gives the mean number of stabilisation attempts
after a leg slip for each leg. The recovery time using only the tip constraint
cuboids was much higher compared to using orientation constraints alone when
a rear leg was slipping. We believe that this was due to the direction of motion
of the rear foot tips during the support phase in the gait cycle being in the

14 Hörger et al.

same direction as the slip. This makes the overall slip much severe compared to
the front or middle legs. Therefore, slips of the rear legs took a greater number
of stabilisation attempts before the robot was able to continue its locomotion
resulting in an overall longer recovery time for slips of the rear legs when using
the tip constraint cuboids only. Using orientation constraints appeared detect
and arrest the slip event much quicker in such instances. The stabilisation system
showed best overall performance when both the tip constraint cuboids and the
orientation constraints were used as seen from the results.

5 Conclusions

We presented a framework for real-time stabilisation of a high dimensional multi-
legged robot. An experimental evaluation of this framework was performed using
a hexapod robot and the results demonstrated the method effectively detects and
recovers from unexpected events such as leg slip. The standard deviation of roll
and pitch of the robot’s body was used as a metric for stability. The stability of
the robot improved by 2× when the proposed method was used, with a reduction
of 3.27◦→ 1.45◦ standard deviation for roll angle and a reduction of 3.94◦→
2.06◦ standard deviation for pitch angle. We also presented results for reaction
time of the system when using different stability constraints based on foot tip
positions as well as the body roll and pitch angles and demonstrated that the
best results are achieved when both types of constrains are used for detecting
instability at run-time. With the proposed real-time stabilisation system, the
hexapod robot was capable of successfully recovering from unexpected leg-slip
events and re-commence locomotion without explicit knowledge of the local ter-
rain. Our current study is limited to planar terrains of zero elevation. We believe
that our approach can easily extend to elevated planar slopes with the help of
an onboard imu. We are currently extending our approach to work on elevated
planar surfaces. We plan to incorporate system dynamics with a better model of
the hexapod platform and knowledge of the terrain from an onboard perception
module to make our approach robust to challenging environments in the near
future.

References

1. Lee, T.T., Liao, C.M., Chen, T.: On the stability properties of hexapod tripod
gait. IEEE Journal of Robotics and Automation 4(4) (1988) 427–434

2. Hauser, K.K., Bretl, T., Latombe, J.C., Harada, K., Wilcox, B.: Motion planning
for legged robots on varied terrain. International Journal of Robotics Research
27(11-12) (2008) 1325–1349

3. Bretl, T., Rock, S.M., Latombe, J.C.: Motion planning for a three-limbed climb-
ing robot in vertical natural terrain. In: proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). (2003) 2946–2953

4. Belter, Dominik; Skrzypczynski, P.: Integrated motion planning for a hexapod
robot walking on rough terrain. In: proceedings of the IFAC World Congress.
Volume 18. (2011) 6918–6923

Stabilisation for Hexapod Robots 15

5. Belter, D., Skrzypczynski, P.: Posture optimization strategy for a statically stable
robot traversing rough terrain. In: proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). (2012) 2204–2209

6. Kerscher, T., Rönnau, A., Ziegenmeyer, M., Gassmann, B., Zoellner, J., Dillmann,
R.: Behaviour-based control of a six-legged walking machine LAURON IVc. pro-
ceedings of the 11th International Conference on Climbing and Walking Robots
(CLAWAR) (2008) 8–10

7. Rönnau, A., Kerscher, T., Ziegenmeyer, M., Zollner, J., Dillmann, R.: Adaptation
of a six-legged walking robot to its local environment. In Kozowski, K., ed.: Robot
Motion and Control 2009. Volume 396 of Lecture Notes in Control and Information
Sciences. Springer London (2009) 155–164

8. Best, G., Moghadam, P., Kottege, N., Kleeman, L.: Terrain classification using a
hexapod robot. In: proceedings of the Australasian Conference on Robotics and
Automation (ACRA). (2013)

9. Wettergreen, D., Thorpe, C.: Developing planning and reactive control for a hexa-
pod robot. In: proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). (1996) 2718–2723

10. Lewinger, W.A., Quinn, R.D.: A hexapod walks over irregular terrain using a con-
troller adapted from an insect’s nervous system. In: proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). (2010) 3386–
3391

11. Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian sampling strat-
egy for probabilistic roadmap planners. In: proceeding of the IEEE International
Conference on Robotics and Automation (ICRA). (1999) 1018–1023

12. Simon, T., Laumond, J.P., Nissoux, C.: Visibility-based probabilistic roadmaps for
motion planning. Advanced Robotics 14(6) (2000) 477–493

13. Sun, Z., Hsu, D., Jiang, T., Kurniawati, H., Reif, J.H.: Narrow passage sampling
for probabilistic roadmap planning. IEEE Transactions on Robotics 21(6) (2005)
1105–1115

14. Lee, J., Kwon, O., Zhang, L., Yoon, S.E.: SR-RRT: Selective retraction-based
RRT planner. In: proceeding of the IEEE International Conference on Robotics
and Automation (ICRA). (2012) 2543–2550

15. Zhang, L., Manocha, D.: An efficient retraction-based RRT planner. In: proceeding
of the IEEE International Conference on Robotics and Automation (ICRA). (2008)
3743–3750

16. Rodrguez, S., Tang, X., Lien, J.M., Amato, N.M.: An obstacle-based rapidly-
exploring random tree. In: proceeding of the IEEE International Conference on
Robotics and Automation (ICRA). (2006) 895–900

17. Hsu, D., Snchez-Ante, G., Cheng, H.L., Latombe, J.C.: Multi-level free-space di-
lation for sampling narrow passages in PRM planning. In: proceeding of the IEEE
International Conference on Robotics and Automation (ICRA). (2006) 1255–1260

18. Saha, M., Latombe, J.C.: Finding narrow passages with probabilistic roadmaps:
the small step retraction method. In: proceedings of the IEEE/RSJ International
COnference on Intelligent Robots and Systems (IROS). (2005) 622–627

19. Lavalle, S.M., Kuffner, J.J., Jr.: Rapidly-exploring random trees: Progress and
prospects. In: Algorithmic and Computational Robotics: New Directions. (2000)
293–308

20. Kuffner Jr., J.J., Lavalle, S.M.: RRT-Connect: An efficient approach to single-query
path planning. In: proceeding of the IEEE International Conference on Robotics
and Automation (ICRA). (2000) 995–1001

	Real-Time Stabilisation for Hexapod Robots
	Introduction
	Technical Approach
	Formulation
	Solution Approach
	Stable configuration caching
	Run time stabilisation

	Experimental Setup
	Hardware
	Software architecture
	Constraint dimensions
	Performance metrics
	Experimental procedure

	Results and Insights
	Conclusions

