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Automated detection of broadband clicks of freshwater fish using
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Large scale networks of embedded wireless sensor nodes can passively capture sound for species
detection. However, the acoustic recordings result in large amounts of data requiring in-network
classification for such systems to be feasible. The current state of the art in the area of in-network
bioacoustics classification targets narrowband or long-duration signals, which render it unsuitable
for detecting species that emit impulsive broadband signals. In this study, impulsive broadband sig-
nals were classified using a small set of spectral and temporal features to aid in their automatic
detection and classification. A prototype system is presented along with an experimental evaluation
of automated classification methods. The sound used was recorded from a freshwater invasive fish
in Australia, the spotted tilapia (Tilapia mariae). Results show a high degree of accuracy after eval-
uating the proposed detection and classification method for T. mariae sounds and comparing its per-
formance against the state of the art. Moreover, performance slightly improves when the original
signal was down-sampled from 44.1 to 16 kHz. This indicates that the proposed method is well-
suited for detection and classification on embedded devices, which can be deployed to implement a

large scale wireless sensor network for automated species detection.
© 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4919298]
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I. INTRODUCTION

Bioacoustics monitoring is often used in ecology as a
passive and non-invasive method to quantify the presence
and abundance of a species of interest, e.g., whales,'? birds,’
bats,4 toads,5 and frogs.6 The long term vision and motiva-
tion is to monitor and protect sensitive ecosystems using
very large scale networks of bioacoustic sensor nodes, which
highlights the importance of automated bioacoustic classifi-
cation of species. Machine learning and artificial intelligence
techniques have been successfully used for sound detection
and classification based on the narrowband sound emitted
by these species. While a few recent studies have character-
ized the broadband sound features of fish species in the ma-
rine’ and freshwater™’ environments, these studies did not
investigate how to automatically detect and classify these
sounds.

Current detection and classification methods for acous-
tic signals are based on the assumption that sounds are either
narrowband or have a relatively long duration (i.e., in the
order of seconds). One such method is spectral correlation
that assumes non-impulsive calls with narrow short-time fre-
quency bandwidths consisting of a sequence of frequency
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up-sweeps and down-sweeps.'® To encompass the shape of
the spectrogram of the target call, a correlation kernel is con-
structed in a piece-wise manner. This kernel is then moved
along the spectrogram of the input signal and cross-
correlated in the time domain to obtain a recognition score
function. Thresholding this function yields detections of the
target calls. Typical call durations used with this technique
are in the order of seconds, which, for example, is common
in whale vocalizations."'

Another classification method is automated music genre
classification using machine learning techniques, such as
Hidden Markov Models and Support Vector Machines'?
with an extracted set of features from the input signal. While
the features used in the literature do not assume narrowband
signals, they rely on signals with duration in the order of sec-
onds. This is reasonable since it generally applies to music
segments used in this field.

Increasingly, short-duration broadband bioacoustic calls
are being recognized to exist in nature.'> While the literature
address detection of some repetitive impulsive sounds such
as those produced by Sperm whales (Physeter macrocepha-
Ius),"* existing detection methods do not adequately address
non-repetitive broadband bioacoustic calls.'® This paper pro-
poses a detection and classification approach for short-
duration broadband bioacoustics based on a small set of
amplitude-invariant spectro-temporal features (STFs). To de-
velop and test this approach, sound recordings of the spotted
tilapia (Tilapia mariae), a freshwater fish that is invasive to
Australia,'®!'” were used. The presented approach is based
on the retrospective selection of small STF vectors that are
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tailored for short-duration broadband sounds, followed by
classification using Discriminant Analysis (DA) and Logistic
Regression (LR). The computational performance of this
approach for automating broadband bioacoustics detection
and classification in the field was also quantified.

Il. MATERIALS AND METHODS
A. Study species

Tilapia mariae (Fig. 1) is a freshwater and estuarine tel-
eost native to West African coastal drainages in the Gulf of
Guinea and naturalized in the USA, Australia, and possibly
Russia'® due to aquarium and aquaculture releases. In its
native range, it can be the dominant fish species in streams,
rivers, lakes, and estuaries,'® and supports local subsistence
and artisanal fisheries in some catchments. "'

Outside its native range, T. mariae has a potential detri-
mental impact on native ichthyofauna, including competition
for food®” and breeding space,?' thereby affecting the rela-
tive abundance of native and endemic species.'” In
Australia, T. mariae is a declared noxious fish under the rele-
vant State Fisheries Acts in all states and territories, except
Western Australia, and is listed on the National Noxious
Fish List.”* Notwithstanding, it has continued its range
expansion in the Wet Tropics region since its first detection
around 1980.'7% The long-term efficacy of current T.
mariae management strategies, including the banning of its
possession,”**> the introduction of the peacock cichlid
(Cichla ocellaris) in Florida (USA)*® and public awareness
and education in Australia,25 and electro-fishing are uncer-
tain and have not been quantified.

B. Large-scale bioacoustics monitoring

The growing spread of invasive fish species, such as 7.
mariae, demands monitoring systems that can cover large
spatial scales. Invasive monitoring methods such as ultra-
sonic fish tags are expensive and not scalable. Instead, the
focus is on the passive capture of sound through a wireless
network of acoustic sensor nodes, which is a more affordable
and noninvasive approach. Local processing of captured
sounds on each node avoids the energy and bandwidth over-
heads associated with sending raw audio data continuously
over wireless links. In-network acoustic classification must
consider the resource limitations that are inherent to battery/
solar powered sensor nodes and the suitability of feature sets

FIG. 1. (Color online) Courting pair of T. mariae used in the case study with
the larger specimen (male) on the right and the smaller specimen (female)
on the left.
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for the species of interest. To motivate the need for computa-
tionally efficient algorithms for automated bioacoustic clas-
sification, the audio node is described in the Appendix as the
main building block for a large scale acoustic monitoring
system.

C. Recording setup and procedure

To study the acoustic behavior of T. mariae, sound and
video recordings were made of five individual fish (range of
total length 15 28cm) in a freshwater aquarium (183 cm
L x60cm H x45cm W) filled with rainwater (temperature:
24°C). A Reson TC4032 hydrophone (Teledyne RESON A/S,
Slangerup, Denmark) was placed in the tank, and associated
behavior was recorded via an external video camera (Fig. 2).
The hydrophone was sufficiently close to the fish to assume
direct signal dominance as opposed to reflected sounds off the
tank wall. During recordings, tank filters were switched off to
minimize acoustic interference. Consequently, recordings were
kept to a maximum of 60 min to minimize buildup of waste ma-
terial, and filters were switched back on in between recordings.

The hydrophone is a low noise, sea-state zero hydro-
phone with a 10 dB built-in preamplifier and a receiving sen-
sitivity of —170dB re 1V/uPa. It has a linear frequency
range of 15Hz to 40kHz with =2dB.?’ The hydrophone
was connected to a laptop computer via a Cakewalk FA-66
device, which is a FireWire audio interface providing addi-
tional pre-amplification and analog to digital conversion.
The nominal input level for this device was —50 to —10
dBu. Recordings were stored as uncompressed Pulse Code
Modulated (PCM) Wave files with a sample rate of 44.1 kHz
and a resolution of 24 bits. The PCM Wave files can be
down-sampled to match the quality of sound recorded
through the audio node.

Courting
pair

Audio Interface

Tank

FIG. 2. The experimental setup showing the hydrophone inside the aquar-
ium tank with 7. mariae.
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Sound and video recordings were conducted over a two
day period when courting behavior was observed between a
pair of fish who mainly occupied one end of the tank. This
pair engaged in nest building as evidenced by pebbles on the
bottom being moved to this end of the tank. The results and
analysis presented in this paper are based on a 60 min record-
ing session.

D. Detection and classification of short-duration
broadband sound

The initial recordings revealed a clicking sound, which
was confirmed as being produced by 7. mariae using
synchronized video footage. The audio and video tracks were
synchronized in post-processing using an event captured on
both recordings (a single soft tap on the aquarium glass). The
T. mariae clicking sound was approximately 10 ms in duration
with most of the spectral energy in the 3-8 kHz region with
higher harmonics (Fig. 3). Various sounds were present in the
recordings which included pebble movement, clicking, scrap-
ing, and chewing by the fish, most of which had broadband
spectra. The recordings were then manually annotated with
ground truth, i.e., the time stamps of acoustic activity (clicking
sounds) by the fish were saved as a label track in Audacity.”
The audio was also processed with a high pass filter with a
cutoff frequency f.. of 1000 Hz to remove low frequency noise
such as aquarium pumps and aerators of other tanks in the
aquarium as well as the 50 Hz mains hum and its harmonics.
As with many other bioacoustics applications, it is necessary
to detect and segment “events of interest” as a first step before

e |

further signal processing is done. For this purpose, an audio
detection and segmentation algorithm using an energy detector
implemented as a finite state machine was used to extract the
various instances of sounds and to discard the background
noise.?’ This returned a series of leading-edge aligned sound
segments. The manually annotated ground truth time stamps
were aligned with the segmented sounds to give each detected
sound a corresponding class label to be used for cross valida-
tion of the automated classification process later on. From one
set of recordings (60 min duration) used for this study, there
were 48 manually annotated T. mariae clicks, verified with
video footage showing synchronous mouth movement.

The next step in the process is to extract features from the
segmented sounds. As discussed previously, most standard
acoustic features assume longer duration sounds and/or nar-
rowband signals. Given that our classification target is a short
duration broadband signal, first a set of nine-dimensional fea-
tures derived from the music genre classification literature is
considered [Timbral Texture Features (TTFs)]***! and then a
set of six-dimensional features specifically selected for short-
duration broadband sounds is considered (STFs).*?

1. TTFs

TTFs as described in the literature are assembled by ini-
tially dividing the signal into relatively small analysis win-
dows with a duration of 23 ms. Multiple analysis windows
make up a larger texture window with a duration of Is.
Characteristics such as spectral centroid, spectral roll-off,
spectral flux, and zero-crossings as well as Mel-Frequency

- |

Time (ms)
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Cepstral Coefficients (MFCCs), are then calculated for each
analysis window. The final feature vector consists of the
means and variances of these quantities over a full texture
window. Due to the much shorter timeframe of the T. mariae
sound, the actual values of spectral centroid, spectral roll-
off, spectral flux, zero crossings, and the first five coeffi-
cients of MFCCs are considered, giving a nine-dimensional
feature vector for each sound segment. This contrasts with
using the means and variances of these quantities over a
much larger time window as done in the literature.*

2. STFs

To effectively characterize the short duration broadband
T. mariae click sound, a unique set of STFs (Ref. 32) are
introduced as an alternative to existing sound classification
features. Specifically, a number of attributes in the spectral
and temporal domain were observed which could be used for
this purpose. The spectrogram consisting of power spectral
density values (assuming time and frequencies are discre-
tized) is given by

L
P(fvl) = k|S(fat)|25 where k = 2 fVZ |(H(I’l)|2 5
n=1
(1)

where S(f, ) is the short time Fourier transform of time do-
main signal s(¢), @(n) is the Hamming windowing function,
L is the window length, and f; is the sampling frequency.
The relative sound levels over frequency F(f) and over time
T(z) are given by

fs/2

T(1) = 10log,e Y P(f.1),
=0

4
F(f) = 10logo» P(f.1), 2)
=0

where 7 is the duration of the relevant sound segment.

Figure 4 shows a set of plots of relative sound level over
frequency (F) and time (7) for a typical T. mariae click,
averaged over (i) all the manually annotated 7. mariae clicks
and (ii) all other manually annotated sounds detected in the
detection and segmentation phase. The spectral and temporal
characteristics unique to the event of interest (the 7. mariae
click) were used as the basis for selecting the STFs.

As mentioned, spectrogram P is calculated for each
segment as given by Eq. (1) and subsequently 7 and F
are derived as given by Eq. (2). Figure 5 shows a typical
T. mariae click spectrogram along with its frequency
distribution and temporal evolution F and 7. Maximum
values and positions of these maximum values for F' and T
are then calculated as ¢; = max(7T(z)), a; = argmax(7T(t)),
c; = max(F(f)), a, = argmax(F(f)). The lengths of T and F
are by and b,, respectively. The mean values of T and F are
dy and d», respectively. The set of STFs with six elements
denoted by {v; - - - v} and defined as follows with reference
to the above quantities and those shown in Fig. 5:

v;: The ratio between the peak position of 7(¢) and the dura-
tion of the sound segment ¢ (i.e., a;/b);

vy: The ratio between the peak position of F(f) and the fre-
quency bandwidth (i.e., a2 /b);
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FIG. 4. (Color online) Spectral (first row) and temporal (second row) characteristics of (a) a representative example click, (b) average of 48 detected clicks,

and (c) average of 773 other sounds detected in the recordings.

J. Acoust. Soc. Am., Vol. 137, No. 5, May 2015

Kottege et al.: Detection of broadband clicks 2505



|
v
o

| | |
x® ~ [N}
(=] (=) (=)

Relative sound level [dBFS]
|
o)
o

=100 |

-110 |

=120

Frequency [kHz]

=50

o o o
TRR

=)
T

-100
-110
-120

Relative sound level [dBFS]

Time [ms]

v3: The gradient of T(r) immediately before the peak [i.e.,
tan(0;)] implemented as the gradient of the least squares fit
lines of the three points immediately before the peak position;
vg: The gradient of the least squares ¢ line of F(f) [i.e.,
tan(0,)];

vs: The ratio between the peak value of T(7) and its mean
value (i.e., ¢1/dy);

vg: The ratio between the peak value of F(f) and its mean
value (i.e., ¢a/d).

These features were selected to be signal strength invari-
ant, which contributes to the robustness of the subsequent
classification process. STFs were calculated for each detected
sound segment and make up the feature vector associated with
that sound. These were used as the input vectors for the auto-
mated classification of sound produced by T. mariae (Fig. 6).

Two standard classification methods commonly used in
machine learning, DA and LR,3 3 are used as two independent

Ground truth Cross- L
annotation validation
High-pass Detection F
Hydrophone filter & eature
extraction
f=1000Hz segmentation

f l

Pre-
amplification &
A/D conversion

Classification =

FIG. 6. Functional block diagram of the evaluation process.
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classification methods for evaluation. Performance of STF
and TTF vectors are compared with the same two classifica-
tion methods and the cross validated results are presented in
Sec. IIIB. STF vectors are also compared against spectro-
gram correlation, which is a classification technique without
explicit feature extraction.>'® Apart from ground truth anno-
tation for the offline training process and performance evalua-
tion, the complete process of detection, segmentation, feature
extraction, and classification was automated. While the evalu-
ation results presented herein were obtained using offline
processing, the system can potentially be used for an online
implementation.

3. Classification metrics

To evaluate and compare the performance of the classi-
fication methods, Accuracy, Precision, Sensitivity (Recall),
and Specificity of each classification method/feature set
combination are calculated using k-fold cross-validation.
These four metrics are defined as follows:

tp+1in
Accuracy = ———————,
tp+tm+fp+fn
.. p
Precision = ,
i +fp
. Ip
Sensitivity = ,
Y tp + fn
Specificity = —" 3)
ecificity = ——,
P A p

where fp, tn, fp, and fn are the number of true positives, true
negatives, false positives, and false negatives, respectively.
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TABLE I. Autopsy results of breeding pair of spotted tilapia, Tilapia mariae.

Total length Standard length Weight
Specimen (mm) (mm) (2) Gonads
Small fish 212 174 214 Eggs
Large fish 280 225 491 Sperm

To further quantify the classification performance of
each feature set, an overall performance metric is defined
which is the product of accuracy, precision, sensitivity, and
specificity. Since it is desirable for each of these quantities
to tend to 1 and since their range is 0-1, the new perform-
ance metric would reflect the overall performance of these
quantities and remain in the range 0-1.

To evaluate the performance of the features and classifi-
cation methods at lower sampling rates, the original
44.1 kHz recording was down-sampled to 16 kHz and then to
8 kHz. The detection, segmentation, feature extraction, and
classification process was repeated for each of these down-
sampled recordings.

lll. RESULTS
A. Description of T. mariae acoustic behavior

Analysis of the synchronized video revealed that the
clicking sounds were emitted by the smaller fish (i.e.,
female) of the courting pair. Females have been found to
produce sounds in 17 cichlid species, but not in T.
mariae>**> Hence, although differences in morphology
exist within breeding pairs of T. mariae,'® the sex of both
fish were confirmed by autopsy (Table I).

The behaviors of the two fish comprising the courting
pair (Fig. 1) were distinctly different. The smaller fish, i.e.,
female, displayed increased agonistic behavior toward the
three individuals approaching the nest building end of the
tank, including charging and chasing them to the other end of
the tank. The larger fish, i.e., male, spent most of the time
around the nest and displayed relatively less agonistic behav-
ior. Agnostic behaviors such as Lateral display, Tail beating,
Carouseling, and Mouth Fighting were also observed.*
Hatched fry observed a month after the recordings confirmed
that the observed pair had indeed been preparing for breeding.

The female produced the clicking sound mostly while
the courting pair was at the nest building end of the tank or
when the female was near the middle of the tank. It would
position itself between the male at the nest and the other
three fish at the other end of the tank. Frame by frame analy-
sis of the video shows visible movement of its lower jaw
associated with the onset of the click sound, but the jaw
remains in that position for a period of up to 500 ms after the
click (Fig. 3). Furthermore, there was a very faint character-
istic “bubbling” sound trailing the click by about 200 ms and
this lasts for up to 1 s after the click (Fig. 7).

The authors are not aware of other studies on cichlids
documenting click sounds with similar duration and fre-
quency range, except for a reported wide frequency range
(1-16 kHz) for Tilapia mossambica.>’ The production mech-
anism of the observed sound is unclear, but could possibly
involve the swim bladder. Even though cichlid species are
shown to be sensitive up to 3kHz (and some species up to
4kHz),*® sensitivity studies on T. mariae are not reported in
the literature. However, in fishes the ability to vocalize is in-
dependent of hearing sensitivities.””

B. Detection and classification performance

As mentioned before, many different sounds apart from
the event of interest (clicking) were present in the record-
ings, including the sounds of the fish moving and flicking
pebbles, scraping against objects, chewing, and interacting
with the water surface. The detection and segmentation algo-
rithm found all of the 48 manually annotated clicks as well
as most of the other sounds mentioned above. Once both
STF and TTF vectors were extracted from the sound seg-
ments, they were classified using DA as well as LR and the
overall performance was evaluated using k-fold cross-
validation with k=10 over 100 iterations. The process of
detection, segmentation, feature extraction, classification,
and cross-validation was initially done with the original
44.1 kHz recording and then repeated for the down-sampled
16 kHz version (64% reduction of sampling rate) and the
8 kHz version (81% of reduction of sampling rate). The total
number of sounds detected by the detection and segmenta-
tion algorithm decreased with the sampling rate, with 821
sounds being detected at 44.1 kHz, 430 at 16 kHz, and to 236

FIG. 7. Spectral and temporal charac-
teristics of a typical T. mariae click.
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TABLE IL.

Performance of DA and LR with the proposed STFs and TTFs along with spectrogram correlation at sampling rates of 44.1, 16, and 8 kHz.

fs (kHz) Features Method Accuracy Precision Sensitivity Specificity
44.1 STF DA 0.97 0.67 0.94 0.97
LR 0.98 0.84 0.75 0.99
TTF DA 0.93 0.45 0.90 0.93
LR 0.95 0.63 0.24 0.99
Spect. corr. 0.85 0.00 0.00 0.90
16 STF DA 0.95 0.69 0.95 0.95
LR 0.96 0.85 0.78 0.98
TTF DA 0.89 0.52 0.27 0.97
LR 0.90 0.79 0.13 0.99
Spect. corr. 0.85 0.25 0.19 0.93
8 STF DA 0.85 0.58 0.95 0.83
LR 0.93 0.83 0.82 0.96
TTF DA 0.86 0.76 0.43 0.96
LR 0.87 0.76 0.56 0.95

at 8 kHz. Despite this reduction, the 48 manually annotated
clicks always appeared in the detected segments.

For the higher sampling rate of 44.1kHz, STF out-
performed TTF for accuracy, precision, specificity by 4%,
and sensitivity by 48% when using DA. Going from 44.1 to
16kHz, the average accuracies for STFs dropped from 0.98
to 0.96 and for TTFs from 0.94 to 0.90. With down-sampling
to 16 kHz, precision of STFs increased by 1.5% and accuracy
decreased by 2%. For TTFs, precision improved by 15% and
accuracy decreased by 5%. However, sensitivity decreased
drastically by 70% for DA and 46% for LR. At 8 kHz, the av-
erage accuracies of STFs and TTFs dropped to 0.89 and 0.86,
respectively, which is approximately a 9% drop compared to
the results at 44.1 kHz (Table II).

Despite an accuracy of 0.85, spectrogram correlation
has very low utility due to its low precision and sensitivity.
This stems from the fact that the correlation kernel used in
spectrogram correlation relies on a relatively long duration,
slow varying, narrowband signal such as the frequency
sweeps common in whale calls." The short-duration impul-
sive broadband click of T. mariae does not conform to these

characteristics yielding poor performance when using spec-
trogram correlation. Due to this, spectrogram correlation
was not evaluated for the 8 kHz down-sampled recording.

Receiver Operator Characteristic (ROC) curves for 44.1
and 16 kHz demonstrate the robustness of STFs compared to
TTFs as the sampling rate is reduced to 16kHz (Fig. 8).
These curves also depict the poor performance of spectro-
gram correlation both for 44.1 and 16kHz sampling.
Overall, for both classification methods STFs show better
performance compared to TTFs.

1. Effects of reduced sampling rate

To observe the effect of reduced sampling rate on each
of the STF components, the density distributions of features
associated with (i) detected T. mariae clicks and (ii) all
detected sounds (full data set) for both 44.1 and 16 kHz sam-
pling rates are plotted (Fig. 9). T. mariae clicks have their
peak energy in frequencies below 8 kHz whereas the other
sounds present in the recordings have their energy spread
into the higher frequencies. At 16 kHz sampling, the peak
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FIG. 8. (Color online) ROC curves at f; =44.1kHz (left) and f; = 16 kHz (right), for DA and LR with the proposed STFs and TTFs along with spectrogram

correlation.
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FIG. 9. (Color online) Density distribution of the six features {v; - - - v}, comparing the positive examples (triangles and crosses) with the full data set (circles
and squares) for the original 44.1 kHz recording and the down-sampled 16 kHz version.

energy portion of the T. mariae click is still preserved while
the other sounds lose the more energetic part of their spectra.
This explains why feature vy loses its separation from the
full data set [Fig. 9(d)] when down-sampled to 16kHz as
this feature is based on the shape of the frequency distribu-
tion over the full bandwidth. However, features v, and v3
have increased separation between clicks and the full dataset
at the lower sampling rate.

Due to other sounds losing most of their energetic por-
tion of the spectrum when down-sampled, the total number
of sounds picked up by the detection and segmentation algo-
rithm decreases with down-sampling from 821 at 44.1 kHz
to 430 at 16 kHz and 236 at 8 kHz (Fig. 10). For example, at
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FIG. 10. (Color online) Reduction in the number of samples to be processed
during sound classification with the decreasing sampling rate. The error bars
represent the maxima and minima for the two different classification algo-
rithms DA and LR.
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16 kHz, which is the sampling rate used on the audio node,
the number of samples to be processed is 70% lower than at
44.1 kHz. Despite this substantial reduction, the 48 manually
annotated clicks always appear in the detected segments.
Moreover, the classification performance for STFs comes
with an actual increase in precision and sensitivity and only
a small decrease in accuracy (2%). This is reflected as an
overall increase in the performance metric (0.58 to 0.60). In
contrast, the performance for TTFs is nearly halved, high-
lighting the robustness of STFs to lower sampling rates.

Therefore, it can be concluded that a sampling rate of
16 kHz strikes a much better balance between the number of
samples to be processed and classification performance of
STFs.

IV. DISCUSSION

This paper presented a novel set of signal strength invar-
iant STFs which effectively characterize short duration
broadband bio-acoustic calls. These features can then be
used with standard machine learning techniques to accu-
rately and efficiently detect and classify species such as T.
mariae. When combined with the audio detection and seg-
mentation algorithm used in this work, it was shown that an
accuracy >0.95 can be achieved while the number of sam-
ples processed can be reduced by 70% when the signal is
down-sampled. It was demonstrated that the proposed fea-
tures remain robust even at the lower sampling rate of
16 kHz. This along with the relatively small feature set size
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makes it ideally suited for implementation on the wireless
audio node platform as described in supplemental material
to this paper.*® These audio nodes could potentially serve as
the building blocks of a large scale freshwater monitoring
system deployed along inland waterways and lakes enabling
real-time in-network detection and classification of fresh-
water species.

It was further demonstrated that the automatic classifica-
tion of the distinct clicking sound through DA and LR per-
forms with high accuracy and specificity, but with lower
precision and sensitivity. DA emerges as the better perform-
ing method for automatic classification of vocalizations by
this particular species.

This study is the first to confirm vocalization by a female
cichlid in a breeding pair of T. mariae. In addition, to the best
of our knowledge, these types of click sounds have not been
reported in the literature for fresh water fish. The observation
of female vocalization expand on previous studies on other
cichlids, of which females have been found to produce sound
in 17 species.34’3’5 In T. mariae, males have been documented
to vocalize during aggressive male-male interaction.>*>> The
exact role and general occurrence of female vocalization in
this and other cichlid species, as well as the mechanism pro-
ducing the sound, are unclear and require further research.
Furthermore, the occurrence of similar clicking sounds in
other species is worthy of investigation.

The ability to detect and to automatically classify T.
mariae through the passive capture of sound enables not only
the detection of presence of a species, but also the possibility
of population control. Through integration with wireless sen-
sor network technology, detection of this invasive species can
be automated over large spatial scales to cover freshwater
bodies such as rivers and lakes. This in itself could enable
water management specialists to implement control measures
in the specific regions where the species has been detected.
Population control can be enhanced through the automation
of active measures as well. For instance, the click sound can
be played back synthetically in areas suspected to be on the
invasive front in order to lure T. mariae to a spot where they
can be easily captured. Alternatively, synthetic sound can be
used to disrupt mating calls.

While the current study has demonstrated effective
sound classification for species detection in a controlled
environment, the authors acknowledge that species detection
in an uncontrolled environment could be more difficult. The
small size of the test tank introduced reverberations which in
turn manifest themselves as interfering signals. A natural
environment (e.g., Riparian environment) would not typi-
cally have these strong reverberations but would present
other interfering noise sources such as water flow induced
hydrodynamic sounds. However, the short duration broad-
band nature of the detected clicking sound makes it robust to
most interference, noise, and frequency selective fading
common in the underwater medium.*' It can be anticipated
that the aforementioned flow noise and dispersion due to sus-
pended solids, may affect acoustic propagation and therefore
limit the detection range and classification quality in natural
freshwater environments. These are issues that need to be
examined in experimental field work in order to design an

2510  J. Acoust. Soc. Am., Vol. 137, No. 5, May 2015

effective long-term bioacoustics monitoring program in such
environments.
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